Computer Graphics 2018 Cheat Sheet

Lecture 1

Parametric representation
s:R™ — R" with s : R2 — R3 then
s(u,v) = (z(u,v),y(u,v), y(u,v))

Advantages: Easy to generate points on the curve / survace.

Analytic formulas for derivatives. Disadvantages: Hard to
determine inside outside, Hard to determine if a point is on
the curve/survace.

Implicit curves and surfaces

Surface and Courve defined by kernel function:

f:R™ = R Curve in 2D: S = {x € R?|f(z) =0}

Surface in 3D: S = {x € R®|f(z) = 0}

Space partitioning: {z € R™|f(z) > 0} — Outside then
with f(z) < 0,inside and lastly with f(z) =0 on courve /
surface. Boolean set operations: Can be applied like
Union, Intersection ethc. J; fi(x) = minf;(x) and
intersection: (N, fi(z) = max f;(x)

Advantages: Easy to determine inside/outside, Easy to
determine if a point is on the curve/surface. Disadvantages:
Hard to generate points on the curve / surface. Does not lend
itself to (real-time) rendering.

Surface Representation Zoo

Parametric Implicit Discrete/Sampled

Polygon

Verices: vg,v1, ...vn—1 with Edges: (vo,v1), ..., (Vn—2,vn—1)
and closed if vg = v,—1. Planar: All vertices on a plane.
Simple: Not self intersecting.

Polygonal Mesh: Set of M closed, simple polygons Q;. The
intersection of two polygons in M is either empty, vertex or an
edge (so no overlap!).

M = (V,E, F) = (Vertices, Edges, Faces(Polygon))
Boundary: Set of all edges that belong to only one polygon.
Vertex degree:

Texture Mapping

Mapping between the surface and the image. Each point

(z,y, z) on the surface has mapped coordinates (u,v) in the
texture image: P : M — [0,1] x [0,1]. P(z,y,z) = (u,v). And
this (u,v) then map to a color rgb defined in the image.
T(u,v) =7, g,b. This means that

Color(z,y, 2) = T(P(2,y, 2)-.

Mesh parametererization desiderata: Minimal distortion:
preserve 2D angles, distances and areas. No stretch.

» Splines, tensor-
product surfaces
+ Subdivision surfaces

* Metaballs/blobs
« Distance fields
» Procedural, CSG

* Meshes
« Point set surfaces

2 - Polygonal Meshes

Piecewise linear boundary representations of objects. Since
linear approx we have O(h?) error. The more faces the less
error obviously.

Lecture 3 - Light and Matter

Incandescence: Visible light produced from heat

Black body: Completly absorbs all wavelengths of thermal
radiation incident on it. Appear black and temperatur low
enough to not be self-luminous. In a perfect blackbody the
color spectrum of the emission is defined purely by the
temperature of the material. Planck’s Law: Defines color
spectrum of a black body at specific temperature. Planck’s law
accurately describes black body radiation. Shown here are a
family of curves for different temperatures. The classical
(black) curve diverges from observed intensity at high

10 ulraviolet visible infrared

Intensiy 7 (acb, urits)

frequencies. ° M wckngt 3 gy 2 ' Luminescence:
Emission of light by a substance not resulting from heat.
(chemical electrical subatomic etc)

Atomic Emission: When an atom changes its energy level
(in does that in discrete steps - meaning as soon as it is fully
loaded it jumps possibly multiple levels to the next layer)
saving energy and then it jumps to lower level of layers and
releases energy by releasing wavelengths which is what we see.
Fluorescence: occurs when light striking a surface is briefly
absorbed and then re-emitted at a lower frequency. (e.g.
Blacklight)

Radiometry studies the measurement of electromagnetic
radiation. Radiometry assumes that light consists of photons.
State of a Photon: x: Position, w: Direction of travel, A:
Wavelength. Each Photon has a method to calculate its

h
Energy level: £ = ne where h is Planck constant and c is

speed of light.

Flux ®(A): Total amount of radiant energy (photons) passing
=W.

R

through a surface or space per unit of time!! ®(A) =

Irradiance E(z): Flux per unit area. So we just measure the
dP(A) w
dA(z) m2?’
have a wall then average flux on that wall. Just divide through
area of wall.

Radiosity: Is just the flux leaving the surface per unit area.
Radiant Intensity: Is the directional flux - flux per solid
angle. We want to now exactly how much light hits our point

from a given direction for this we need radiant intensity. (2

dd
vectors imagine 3d). [(W) = — =

flux over unit area. E(x) = Imaging just if we

—. Solid angle can be
r

written in integral form as follows: fOQW d¢ [y sin6df = [ dQ
Radiance: Radiance is useful because it indicates how much
of the power emitted, reflected, transmitted or received by a
surface will be received by an optical system lookian at that
0“Pe

surface from a specified angle of view. L. o = D04 58

Overview of Quantities

J

« flux: B(A) [; = W} XA
+ irradiance: E(x) = ﬁ((A; [my @
+ radiosity:  B(x) = (ﬁ((i; [m? @
+ intensity: I(&) = % [? ’
+ radiance: L(x,d) = (0\(192;)4((1)11 [ > }

Some real life examples:
Point light source irradiance:
¢
= , 0= [, E(x)dA
47nr2 = SurfaceArea ¢ =J1E@)
Radiant Intensity: Is better described as ¢ = [, I(w)dw
over the unit sphere we have I = ¢/4r

Radiance ¢ = [, [q L(z,w)cos0dwdA
E(p): E(p) = [q Li(p,w)|costd|dw =
OQW 87/2 Z(p, 0, p)cosOsinddfd¢ = wL; if same radiance from

all directions.



Lecture 4 - Ray Tracing

Local Coordinate Frame

« Goal: create a local frame defined by normal 7
— Step 1: Compute tangent #’

« Zero one component of 77, swap the other two
negating one of them and normalize

— Step 2: Compute bi-tangent b =7 x
— Step 3: Construct a “TBN” matrix: [

M=

SHSH S
LSS

T
& E
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<>

N
30

&

+ Transforming between local @ and global a,:

o o o —1_ = T =
dy=M-a a=M" d,=M"-d,

r(t) =6+ td

Forward ray tracng (light tracing) Trace all lights from
light source and wait for a light to hit the camera / eye.
Backward ray tracing (camera tracing): Shoot light from
eye (primary ray) and wait for ray to hit light source. If we
shoot a ray to the lightsource directly from an intersection
then it is called shadow ray. Any other next ray after
intersection is called secondary ray.

Sphere equation: (implicit) ||z — ¢||2 — 72 = 0. To
intersect with ray just insert r(¢) = o + td in position of x and
solve for t.

Plane equation (implicit): az+by+cz+d=0
(algebraic), (z — p) - n = 0 (geometric).

Barycententric coordinates conversions: Given bary
coord: A1,A2,A3, £ = A1z1 + Aox2 + A3x3 where x1,x2, 3 are
the corresponding triangle vertices.

Given cartesian coordinates rearrange the above equation by
rewriting: A3 =1 — A2 — A1 and then rarranging this for for
the unknown factors.

Triangle equation: Where triangle is just a plane where
the normal gets constructed from the 3 points (use cross
product (p2 - pl) x (p3 - pl)). To test if point is inside the
triangle use the barycentric coordinates and check if they sum
to one and are between 0 and 1.

BRDF (bidirectional reflectance distribution function:
) Ratio of outgoing light to incident light.

Diffuse Shading: Depends on surface orientation (7), light
position wj, material parameter (albedo param), and is
independent of camera position.

Ly(z, W) = kgl (wW)cos(0) = kql(W)7 - w; mind the lambertian
cosine law that states that the bigger the angle between the
surface and the light source the further out spread is the light
and therefore the less light falls on a single spot.

Ray:

Lecture 5 - Ray Tracing Acceleration
Ray-AABB Intersection

« Intersection of slabs

0p + to1de = Tmin o =
0y +tzods = Tmax
' I
s: solve for ¢
nin = Oz,
@ 2= yoin Iy
if £y > o 2 swap(ten, teo) /
repeat for : ty1,tya,tar, b o (,)d
r(t
B o (ton. 10, 121)
[ = min (tz2. ty2.t-2)
hit if: tmin < tmax

Uniform Grids: Cut scene into uniform grid and shoot ray
through the grid. We can stop at first intersection. + Easy to
code. , - Uniform cells do not adapt to non uniform scenes, -
Hierarchical grids

KD Tree: 1) Compute bounding box and then recursively
split ells using axis aligned plane. Until max depth or min
num of objects. 2) When

Key Points:

1. Ray-surface intersections dominate computation in ray
tracing

2. spatial pre-sorting significantly reduces ray-surface
intersection (O(N) -; O(log(N)))

3. How to decide which is best? Uniform grids, hierarchical

grids, kd-trees, bsp-trees, bounding volume hieararchies.

Lecture 7 - Appareance Models
Conductors vs. Dielectrics

Smooth dilectic materal

BRDF

« Bidirectional Reflectance Distribution Function

dL.(x,@,)  dL(x,&,)

P00 @680) = Gp e G0 = Tk, 3) cos b; 4

(1/s1]

dL,(x,w;)

Reflection Equation

+ The Reflection Equation describes a local illumination model

— reflected radiance due to incident illumination from all
directions Li(x,w;)

Lo(x.@) = /nzf,.(x.;“3,.)LI(XQ,)<:OS 0, d;
BRDFs Properties

+ Physically-based BRDFs:
— Helmholtz reciprocity

f7‘ (X, ‘/Eh QT) = f’" (X7 "37‘1 QI)

Fo(x, 8, o 3))
— Energy conservation

Jr (&3, &y) cosb; dw; <1, V &y
He Isotropic
material: If the brdf is unchanged as we rotate the material
around the normal. (else anisotropic). Isotropic brdf are

functions of 3 variables, incoming angle, outcoming angle and
Ideal Diffuse BRDF

+ For Lambertian reflection, the BRDF is a constant:
L.(x,&,) = / fr(%, &, &, ) Li (%, &;) cos 0; do;
JH?
L,(x) = f,./ L;(x,d;) cos 0; did;
JH?

L,(x) = f, E(x) @h}x)@f(x)

« If allincoming light is reflected:

E(x) = B(x)

E(x) = /mL,-(x) cos 0 di

E(x) = L(x) | cosfdi
azimuth. E(x) =L.(x)7 ’

Lambertian reflection:
(albedo) denoted p:
Ly(z,w = [z fr(x, Wi, wr) Li(x, @) cosdid;) = Ly (x) =

g fH2 Li(x,w;)cosb; dw;

We just have a constant brdf

Reflected Direction

incident direction reflected direction

@ = 2icosd — & = 2(ii - G)ii — @ Index of



Refaction: speedo flightinvacuum

speedo flightinmedium
Ideal Specular Refraction

« Snell’s law

incident direction

n

H 72
0. refracted direction
IT2) Vs
| Wy

n1 sinfy = 72 sin O,

Fresnel equation for Dielectrics:
_ m2cosfi — nicost _ mecost — nacosts

o= n2cosfy + nicosls’ PL n1cosf1 + n2cosbs
BRDF of Specular Reflection

« Ideal specular reflection:

Dirac delta
Reflection function
(flips about normal)
(&, — R(;, 1))
cosb;

Fresnel reflection
fr(x, &, &) = Fo (&)

to cancel the cosine term
in the reflection equation
(Fresnel eq. account for it)

BTDF of Specular Refraction

+ Ideal specular refraction (transmission):

Dirac delta
Fresnel reflection Transmission
function
o 83, — T(@, i)

fe(%, &, @) = %(1 - F.(@) cosf;

to cancel the cosine term
in the reflection equation
(Fresnel eq. account for it)

Recap: Basic BRDF Models

+ Diffuse

Al

Ideal Lambertian surface

» Specular Reflection and Refraction

i

Lecture 8 - Microfacet Theory

Normalized Phong: Give a sennse of roughness by blurring

the reflected rays in a cone about the mirror directi
I e+2 I .
Jr(Wo,w;) = (W - Wy)¢ with wy = (27(7 - w;)

which is just normal reflected direction as we know

Blinn-Phong: Blurr in normal domain instead of reflection
U?i + ’Ll?o

e+2
directions: fr(wo,w;) = %(wﬂh -1)¢ with wy, =
™

is the half-way vector.
General Microfacet Model

Fresnel Microfacet ~ Shadowing/
coefficient  distribution masking

N\ /
F (G, @o) - D(&p) - G(&i, &o)
4f(@; - 1) (o - 1)

F&i,6) =

a8 L Witd,
Wh = 7=
NZ% [+l
Fresnel

Reflectance

copper
aluminum
iron
diamond
— glass

— water

0 10 20 30 4 S0 6 70 8 9
angle of incidence 6;

Real-Time Rendering, 3 Ediion”, A K Paters 2008

Microfacet distribution: What fraction of faces

participates in the reflection ? Prob. distr must be normalized

over projected solid angle sz D (wp,)cosbpdwy, =1
Beckmann Distribution: Follows gaussian:
L tan20,,
D)= ———e a2
(i) macosty,
(milkier) the surfaces is gonna be.

The bigger « the ro

on.
— )

it.

||U7'L + ﬂTo

ugher

Shadow / Masking: Since microfacet can shadow each

other this term does account for that.

G () =

1 , with s =
l+erf(s) + ——~
f(s) S\/» 2

me S

G (i, o) = G (i) - G0y ).

atanf’

Denominator: Correction term coming from energy

conversation, jacobians.

Oren - Nayar Model: Same concept as the microfacet

models but assumes that the facets are diffuse! (No
solution only fitted approximation)

analytic

Lecture 9 - Monte Carlo Integration

Condition:
f(=) f(z)

b NN (CO 7%i N
S, f(@) = [, p( )p(x) ]E[p(x)] szzl

flxs)
p(x;)

where

x; ~ p(x) with the conditions that 1) f; p(x) =1 and
obviosuyl p(z;) can not be 0 for any of the values where

f(x) > 0. r

b, 1SN fa)  b-
o sin(32%) g0~ = AN — T
F /“ € dx =~ Fy N ,=E l @) N ,E l flai)

Reducing Variance: Importance Sampling
+ Importance sampling

. ~
/ f(z)dx Fy = 1, Z F(X3)

- assume p(z) = cf(x)
/p(.r)(l.r =1 —- ¢=-—

« estimator % 1o /f(r)d;r zero variance!
(X c

Reducing Variance: Importance Sampling
« p(z) = cf(z) requires knowledge of integral, which
is what we are trying to solve!

+ But: If pdf is similar to integrand, variance can be
significantly reduced

+ Common strategy: sample according to part
of the integrand

1
importance sampling

Sampling arbitrary distributions

uniform sampling

« The inversion method:
1. Compute the CDF P(z) = /I p(a’) da’
2. Compute its inverse P~ (z) ’
3. Obtain a uniformly distributed random number &

4. Compute X; = P~1(¢)

Transforming Between Distributions

+ Given an n-dimensional random variable X; ~ p, ()

« Lets say we have a one-to-one (bijective)
transformation T

+ What is the distribution of ; = T(X;)?  But why?

* New density is:

P(®) = p,(T(@) = 22

[ ()|

« where |J7(z)| is the absolute value of the
determinant of the Jacobian matrix of 7




Recipe for Area-preserving Sampling
1. Define the desired probability density of
samples in a convenient coordinate system

2. Find (another) coordinate system for a
convenient parameterization of the samples

3. Relate the PDFs in the two systems

« Requires computing the determinant of the
Jacobian

4. Compute marginal and conditional 1D PDFs

5. Sample 1D PDFs using the inversion method

Example sample from disk:

1
1. Defined desired probability: pe(z,y) = — if 22 + 3% < 1,
™
0 otherwise.

2. Find other coordinate system for convenient
parametrization of the samples: = = rcos(0),y = rsind

3. relate the 2 pdfs in the two systems. T'(r,0) = (z,y),

pP(Tve)

T = T(r,0) = —————

pe(x,y) = pe(T(r,0)) (0]
Jacobian matrix:

Jn(r0) — g (d% _ |cos —rsinf

(r.0) = %/ %5 " [sin@  rcosf

Determinant is: |Jz| = 7(cos® 6 + sin®0) = r

Loty Pp(r,60)
) =17 pel.y) =
pelt) {n otherwise Jr(r.0)

Polr.6) = rpole,y) = /7

Since:
Therefore:
4. Computcr margmal and conditional 1D Pdfs: Marginal
fo pp(r,0)dd = 27, Conditional PDF:
pp(r, 0 1
p(ewr) = 2elnd)
p(r) 27
5. Compute CDFS: P(r), P(0) and inverting yields:
r=+&,0=2n&, P(r)=P(R<=r7) = fioo p(k)dk =
[r 2kdk = [k =rt=y = VE=7r

Lecture 10 - Direct Illumination

Energy equilibrium: Lo(z,wW5) = Le(x,wo) + Ly (z, W) =
Outgoing light at point x in direction w = Emitted + reflected
light

Rendering equation:

Lo(x,wp) = Le(x, Wo) + [52 fr(, s, wWo)Li (2, W) cos; div;
Direct illumination: If L; directly comes from an emitter
we call id direct illumination. (Recursion end). If it comes
from a surface of another object we call it indirect
illumination.

Direct illumination: L.(z,w,) =

Le(z,wo) + fH2 fr(z, Wi, Wo)Le(r(z, w;), —w;)cosh;dw; So we
just care about reflection actually. Note that we should not
integrate over the hole hemisphere but just over the angle that
actually could hit our eye via reflection. (solid angle Q).
Instead to sample over direction we can just sample from the

lightsource which leads to a much more efficiency in many
cases:

Ly(z,2) = fAe Jr(z,y,2)Le(y, )V (z,y)
Point light:

P
Intensity: [ = —

T
Sphere light: Irradiance is independent of radius!
(Assuming it always emits the same power)

0; 0,
|cos ZHCOZO‘dA(y)
[l — yl|

Omnidirectional emission from a single point.

Lecture 11 - Importance sampling /
MIS

Importance Sampling

» Placing samples intelligently reduces variance

pa(@ir)

f(r
p(t

Impol‘lance sampling

zv: (x, @iy &) Li (X, @B ) c08 05 1, did g

uniform sampling

Importance Sampling Emissive Surfaces:

~ cos b;| |cos b,
L) = [ Fxy Lty V ey SRR
Ja! Ix =yl

AL Integrate over emissive
surfaces only

dA(y)

Average Sampling: Sample from multiple distributions by
1 Z}_V f (i)

N == 0.5(p1(w4) + pa(wi)
sampling later from the average pdf just sample one of the pdfs
first uniformly and then specifically from that distribution.
MIS: So of course just averaging is not the best solution. So
weighted average would be good for M possible strategies.

when

averaging their PDF:

EF] =X, Nis Zf\]i Ws (a:z)p]:((ml)) with M wy(x) =1
alance Heuristic: ws(x) = ]Vsp75()
Bal H t s () S Nypy @)
(Nsps())”

Power heuristic: ws(z) =

225 (Njp; ()P

Fireflies: We have very high variance when the pdf is not
proportional to the integrand. If we have rare samples with
huge contribution: F¥ = — 31 | —————

N == p(x;) = small
is that every pdf(strategy) should be proportional to a part of
the integral.

So strategy

Lecture 12 - Global illumination

Heckbert’s Classification

Light source

Eye

Image @
plane

LSSDE

Diffuse

More Heckbert:

1. Direct Illumination: L(D|S)E

2. Indirect Illumination: L(D|S)(D|S) + E
3. Classical Ray tracing: LDS x E

4. Full Global Hlumination: L(D|S) * E

5. Diffuse inter-reflections: LDD + E

6. Caustics: LS + DE

Russian Roulette: Termination of recursive algorithm:

BF) =1 -q) - (P 1 g O—E[F]whereF_lF it

& > g for the termination probability q and 0 0therw1se But
be careful, it always increases variance but it always reduces
time per sample and can improve efficiency (if small
contribution, samples tend to be terminated).

Path Tracing

L(x,&) = Le(x,&) + La(x,&) + Li(x,&)

color shade (point x, normal n)
{
for all lights // direct illumination
Lg += contribution from light;

if rand() > q // indirect nation
o' = random direction in isphere above n;
Ly += brdf * shade(trace(x,0')) * dot(n,0') / (p(e’));

if not last bounce specular // prevent double-counting
return Lg + Li / (1-q);
return Le + Lo + Li / (1-9);
¥

Path Tracing - Summary:

1. + Full solution to the rendering equation, simple to
implement

2. - Slow converge,ce (4x more samples to half error),
Robustness issues, (caustics (LS+DE) is problematic),
No reuse or caching of computation, General sampling
issues.



Path tracing

start from film, search for radiance

N

N
I; / We(x,&)L;i(x,d) cos 0 dddx
H2

[
=)

Il
—

/ W;(z,3)Le(z, @) cos 6 diddz
H2
J

Alight

r

Y
Light tracing

start from light, search for importance
Path Integral Form of Measurement Eq

L= / /WF(X""x'>G<X“'Xl)Lr)(Xl,Xn)dxldx,,
Jala

[ et Lt x)G <)o
o,

Direct llumination (3 vertices): L(D|S)E

| L Wex0, 1) L2, 30) G ox 1) (e, 2, 0) Gl Xz |-+

T
n / W0, 30) L (¢ 0 1)Gx0 31 ) [ £33, 1) G065 54 e+
P i1

k-1
inroduce: T'(Rx) = Gi(x0,x1) [ [ £, %501, %5-1)G x5, %511)

- J=1
throughput of path X,

I = /1/"1:(?(0,Xl)Le(kaxkfl)T(@ dx
Jp

path throughput k-1
T(x) = G(x0,%1) Hf(X],X]+I<,xj—|)G(xJ'X]+|>

j=1

JOxx0,%0) - f(xX2, %3, %)

Monte Carlo Path Estimator:

iZN We(i,0,%i,1)Le(®i g, Tix—1)T(T7))
N~ =t p(T7)

p(T7) = p(x0, 1, .., Th—1, Tk)

with

Lecture 13 - Sampling and Antialising
Sampling Algorithms:
1. Random sampling: Iterate: Randomly pick a point

2. Stratified sampling: Lay grid over area to sample, then
For each startum / grid area, Randomly pick a point in
that grid

3. Stratified sampling - correlated: For each strata
randomly pick the same offset

4. Dart throwing: Iterate: Randomly pick a point, if it is
not within the region of others, add the point

Low discrepancy patterns, discrepancy: Ratio of space
vs Ratio of points

Lecture 14 - Participating Media

Properties: Given:
Absorbtion coefficient: oq(z),
Scattering coefficient: os(x),
Phase function: fp(z, @', ).

Derived:
Extinction coefficient: o¢(z) = 04(z) + 0s(x)
Albedo: «a(z) = os(@)

ot (x)

Mean free path: E[l1/o:(x)]

llz—yll
Transmittance: T,(z,y) =€~ Jo "V o (t)at
Radiative Transport Equation:

Absorption Out-scattering
[ty (b
! | \ |
dL(x,&) :‘7 0a(X)L(x,8)dz — 0.(X)L(x,D)dz | Losses

[+ 0a(x)Le(x,@)dz + 04(x) Ls(x, 5)d2| Gains

f &) / I
[ \ &
Emission In-scattering

Beer-Lambert Law: FExpresses remaining radiance after
traveling finite distance trough a medium with constant
extinction coefficient. The fraction is referred to as

transmittance:
L. = (radiance after travelling z)

= e 9t% In
Lo = (Radiance at beginning of beam)

Homogenous volume: T;.(z,y) = e~ tlle=vll

Heteroeneous (spatially varying o):

To(z,y) = e~ Jo* " oe(®)at

Transmittance is multiplicative.

Phase function f, Describes distribution of scattered light

analog of BRDF but for scattering in media.

Unfiorm scattering: [, (W', @) = ™
T

For anistropic scattering: use henyey greenstein phase

function (and for cheap approx schlicks as usual xD )

Volume Rendering Equation

[ Attenuated background radiance

L(x7 J) — Tr(x. X;)L(xn Q) [Accumu\aled emitted radiance
z

+ /n T, (%, x0)ra (50) Lo (x4, )t

+ '/Uz T (%, %¢) 05 (x4 ) s (X, &)t

Accumulated in-scattered radiance

Delta Trackgin:
1. Unbiased technique for free-path sampling
2. inspired by rejection sampling

3. Idea: Add a fictitious volume, combined volume (real +
fictitious) is homogeneous, generate tentative free-paths
analytically, probabilitcally reject / accept collisions

based on local concentrations of real vs fictitious
volumes.

Volumetric Photon Mapping (same as regular photon
mapping)

1. Shoot photons from light sources

2. Construct a blanced kD-tree for the photons

3. Assign a radius for each photon (photon-discs)

4. Create acceleration structure of photon spheres.

5

. Render: For each ray through the medium accumulate
all photon discs that intersect ray. (Beam density
estimation)

There are some differences between tracing photons and
tracing rays. The main difference is that when a photon
undergoes refraction, the power carried by the photon does not
change. In contrast, the radiance of a ray must be weighted by
the square of the relative indices of refraction Russian
roulette photon: 300 photons with power 1.0 W hit a
surface with reflectance 50% instead of 300 photons with
power 0.5 W RR will make 150 photons continue with power
1.0 Very important! p = 1 — min(1,¢'/¢) if rand() | p
terminate else ¢/ = ¢’ /(1 — p)
Radiance estimation: s

P

Ly (2, %) ~ Y b, Fr(@, 0y, ) 7 —

nearest photon. Also possible is to just define radius r and
search for all photons in radius r.

Convergence conditions: Infinitely small radius, infinite
number of nearby photons (infinite storage requirement!)
Progressive Photon Map: Shrink the kernel from image
to image and then at the end average all images together. The

i+
radius for image is given by: 72, , = ——

8E 18 BIVER BYE Mok = T
shrinking of kernel and high « is slow shrinking. convergence
need alpha in 0,1. Converges withour requiring infinite

memory storage!

5 where r is radius to k
T

7“? with « low is fast

Lecture 15 - ML in rendering
General approach: Scattered direct illumination estimated
via MC and Scattered indirect illumination predicted using

Radiance Regression Functions

[Ren etal. 2013]

Radiance predicting MLP

Position x,

Direction
to camera RGB
" XS radiance
Direction | -~ S/ towards
to light camera
N

Normal n

Albedo a
input layer 1% hidden layer 2" hidden layer output layer

NN.

Path Guiding: Idea Learn a coarse approximiation of
incident radiance L;(z,w;) and use it for directional sampling.
Learning is performed in a preprocess or progressively as we
render the scene.



Lecture 16 - Subsurface Scattering

Common in all non metals

BRDF vs BSSRDF

The BRDF The BSSRDF
dLo(,@0) _ . o dLo(xe@a) _ oo .
m = fr(x, &, &) 7[[@()(“@) = S(x;, i3 X0, )

.

S

Ay
N

Highly - Scattering Materials (e.g. Milk) te distribution
of light approaches uniformity. g = 0.9
Diffuse approximation:

Derivation of DA from RTE

1. Radiative Transfer Equation:
(@ - V)L(x,@) = — 0, L(x, @)
+ m/ Folo¢, & @) L, & )de!
2
+Q(x,d)
2. First-order approximation: 5
L(x,3) = —¢(x) + —& - B(x)
A it
3. By requiring identity of the first two moments derive the following
diffusion approximation: N
~DV2(x) + 0ug(x) = Q(x) D=5
30
4. Step by step derivation: http://ci rx.ist. /View
download?doi=10.1.1.357.5122&rep=rep1&type=pdf

More on Subsurface scattering

Lecture 17 - Bidirectional Rendering

Radiance vs Importance: Radiance: Emitted from light
sources, describes amount of light traveling within differential
beam. Importance ”emitted” from sensors, describes the
response of the sensor to radiance traveling within a
Path tracing
start from film, search for radiance at light

_N—

\
:/ /I (x,d)L;(x,d) cos 0 dddx
At H?

:/ / Wi(z, ) Le (2, ) cos 0 diddz
Alghes H?

_J
~
Light tracing

start from light, search for importance at sensor

LSDSE (difficult for any

differential beam.
Still not robust enough for:
unbiased method)

Lecture 18 - Animation

Embeddings: Offest handles, lower dimensionality controls.
e.g. bounding box with 4 vertices with which we can change
the appearance of the underlying model.
Mesh/lattice-based: Parametric curves, surface, volumes.

Mesh-free Hierarchical deformations (Skinning - via
skeleton). Blend shapes.

'w. w— , mesh-based.
L . i Lo
[} % *S (Mesh-free, hierariechal)
o
.
° ‘ ( es: different versions of
*JJJ\,, a = the shape.

R0

Lattice based embedding: Weights are distances to the
nodes py at rest state. Given any basis-function:

x(u,v) = > Pk B (u,v) where By is bilinear function in 2D.
Skinning: Transfer the linear transformations of the joints to
the vertices. Start with rest shape V;(0) and assign each
vertex to joint. Deform vertices in the joint local frame of
reference. Ay, = Ty Ry (4x4 Affine Transformation of joint k)
Blend shapes: V;(0) Neutral shape nesg vertuces u.
Deformed Mesh V/ = V;(0) + 3, 3=, wkV/F

Lecture 19 - Image based rendering

Overview: In computer graphics and computer vision,
image-based modeling and rendering (IBMR) methods rely on
a set of two-dimensional images of a scene to generate a
three-dimensional model and then render some novel views of
this scene. Image based modeling: 1) Select building
blocks, 2) Align them in each image 3) Solve for camera pose

and block parameters

|

[ECEETT M Few cameras  Full 3D geometry and Classical
reflectance
reconstruction,
difficult for complete:
scenes, often applied
for objects of interest,
exploiting a-priori
knowledge o
interactive operation

computer
graphics

PEICELER I Few cameras Depth estimation, Depth-based Medium

error prone view
interpolation

g Dense sampling of Data size / sampling  View
the scene, many  issues interpolation,
cameras. light field
necessary to rendering
enable navigation

Lecture 20 - Light field

An image is a set of rays collected at a location within a
certain field of view. Whereas a light field is a set of rays
collected at all locations to all directions. The light field is a
vector function that describes the amount of light flowing in
every direction through every point in space. The space of all
possible light rays is given by the five-dimensional plenoptic
function, and the magnitude of each ray is given by the
radiance https : //en.wikipedia.org/wiki/Light_field

Limited

Lecture 21 - Denoising
Non Local Means

Non-local means is an algorithm in image processing for image
denoising. Unlike ”local mean” filters, which take the mean
value of a group of pixels surrounding a target pixel to smooth
the image, non-local means filtering takes a mean of all pixels

in the image, weighted by how similar these pixels are to the
target pixel. This results in much greater post-filtering clarity,
and less loss of detail in the image compared with local mean
algorithms

U(p) = ﬁ quﬂ U(q)f(pv q): with
u(p)bzw.v(p) = valueatthatspecificpizel.,and

_|B(@)—=B(p)|?
flp,g) =e is the gaussian kernel but the

difference is over the spatial difference but over the difference
of the neighborhoods: B(p) = |R(p)\ > ieRr(p) V(i) where Q is

the

Bilinear Filtering

A bilateral filter is a non-linear, edge-preserving, and
noise-reducing smoothing filter for images. It replaces the
intensity of each pixel with a weighted average of intensity
values from nearby pixels. This weight can be based on a
Gaussian distribution. Crucially, the weights depend not only
on Euclidean distance of pixels, but also on the radiometric
differences (e.g., range differences, such as color intensity,
depth distance, etc.). This preserves sharp edges.

Filter:

Iﬁltered( )7 - Z

x; €Q
with normalizatlon term:
Wy = > fr(l (@) — I(@))gs (|l — )

z; EQ

(i) fr(1 (z:) = I(z)Ngs (lzs — z]]),

Ifiltered j5 filtered image, I is original image to be filtered, x
are coordinates of the current pixel to be filtered, Q2 is the
window centered at x, fr is the range kernel for smoothing
differences in intensities, gs is the spatial kernel for smoothing
differences in coordinates.

alt =

=K+ G-0>  |1(3) I(k,z)Z) ,
202 ’

2 202
with the sigmas as smoothing parameters. And after
calculating the weights, normalization is important.

Appendix A - Rewriting the Light
integral

L(z — z') = L(x,w) where z,z’ are both points on scene

w(i’j7 k7 l) = exp (

surfaces and w = 2/ —  is the unit vector pointing from x to
x’. Then the bsdf can be rewritten as:
fs(x = ' = 2") = fs(z',w; = wo) where w; = x — x’ and

Wy = x// _ :l?l Figure 8.1: Geometry for the light transport equation in three-point form.
Then the three-point form of the light transport can be
rewritten as: L(z' — z') = Le(x’ — 2”) + [, L(z —
) fs(x = 2’ — 2")G(x + 2')dA(z)



Area Integral Exitant radiance from a point p’ to a point
p: L(p' — p) = L(p',w) with @ = p — p’ (if p, p’ visible).
THEN BSDF goes to: f(p” — p’' — p) = f(p',wo,w;) with
wo=x—z" and w; = 2"’ — '

The three-point
form of the light transport equation converts the integral to be
over the domain of points on surfaces in the scene, rather than
over directions over the sphere. It is a key transformation for
deriving the path integral form of the light transport equation.
Transforming the integral: Multiply by the jacobian that
relates solid angle to area in order to transform the light from
integral over direction to one over surface area which is:
|cos6’|/r2. This and visibility and source costf gets combined
|cosB||cost’ |

llp — »'[]2
Substituting this into the light transport equation leads to:

into a single G term: G(p +> p') = V(p < p’)

L(p' = p) = Le(p' = p) + [, F" =1 = p)L(p" —
p)G(p" < p')dA(p")

The Integral over Paths

One of the main motivations for using path space is that it
provides an expression for the value of a measurement as an
explicit integral over paths, as opposed to the unwieldy

recursive definition resulting from the energy balance equation.

So we define it by:
L(p1 — po) = Le(p1 — po) + [4 Le(p2 = p1)f(p2 = p1 —
P0)G(p2 <> p1)dA(p2) + [ [4 Le(ps — p2)f(ps — p2 —

p1)G(p3 <> p2) X f(p2 = p1 = po)G(p2 < p1)dA(p3)dA(p2)+...

Not that we only multiply the path with no further light
multiplication.

This infinite sum can be written compactly as
L(py = po) = Y P(p,)
=

P(p, ) gives the amount of radiance scattered over a path j, with r + 1 vertices,
Bu =Po:P1 P

where pg is on the film plane or front lens element and p, is on a light source, and
P, ,:// /L\p” > Put)
aa_Ja
=
x ( TT# i1 = vi =, 0) Gl mp,;) AA(pa) - dA(p,).
= J

Before we move on, we will define one additional term that will be helpful in the subsequent discussion.
The product of a path's BSDF and geometry terms is called the throughput of the path; it describes the
fraction of radiance from the light source that arrives at the camera after all of the scattering at vertices
between them. We will denote it by

)
T!p,}:H]kp,ﬂ > ;= Piny) GlDisy ¢ D)y
b

P(p,) = // /l.‘\p, = p,_1) T(p,,) dA(p2) -+ dA(p, )
)

W

Appendix B - Transforming between

Distributions

X; ~px(x), and Y; = y(X;)

Question: What is distribution of new variable Y;?
Derivation: — P(Y < y(z)) = P(X < z) this implies
that Py(y) = Py(y(z)) = Px(x) then

Y dy -1
Py (y)—= =px(x) = py(y) = |=| px(z) for
dx dx
multidimensional: py (y) = py (T'(z)) = px(@)
[Jr ()]
Appendix C - Some mathy definitions
Solid angle: Area of a set of points on the unit sphere. (This
points can be specified by 2 angles. Azimuth and Zenith.)
Integral from direction into spherical: dw = sin(0)dfd¢p
dAcosf
dw = —
r
dA is some area and 6 is angle between area-normal and r is
the distance between the point p from where we look at the
surface and the surface.

Given:

Integral from directions into area: where
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