
Computer Graphics 2018 Cheat Sheet

Lecture 1

Parametric representation

s : Rm → Rn with s : R2 → R3 then
s(u, v) = (x(u, v), y(u, v), y(u, v))
Advantages: Easy to generate points on the curve / survace.
Analytic formulas for derivatives. Disadvantages: Hard to
determine inside outside, Hard to determine if a point is on
the curve/survace.

Implicit curves and surfaces

Surface and Courve defined by kernel function:
f : Rm → R Curve in 2D: S = {x ∈ R2|f(x) = 0}
Surface in 3D: S = {x ∈ R3|f(x) = 0}
Space partitioning: {x ∈ Rm|f(x) > 0} → Outside then
with f(x) < 0, inside and lastly with f(x) = 0 on courve /
surface. Boolean set operations: Can be applied like
Union, Intersection ethc.

⋃
i fi(x) = minfi(x) and

intersection:
⋂
i fi(x) = maxfi(x)

Advantages: Easy to determine inside/outside, Easy to
determine if a point is on the curve/surface. Disadvantages:
Hard to generate points on the curve / surface. Does not lend
itself to (real-time) rendering.

Surface Representation Zoo

2 - Polygonal Meshes
Piecewise linear boundary representations of objects. Since
linear approx we have O(h2) error. The more faces the less
error obviously.

Polygon
Verices: v0, v1, ...vn−1 with Edges: (v0, v1), ..., (vn−2, vn−1)
and closed if v0 = vn−1. Planar: All vertices on a plane.
Simple: Not self intersecting.
Polygonal Mesh: Set of M closed, simple polygons Qi. The
intersection of two polygons in M is either empty, vertex or an
edge (so no overlap!).
M = 〈V,E, F 〉 = 〈V ertices, Edges, Faces(Polygon)〉
Boundary: Set of all edges that belong to only one polygon.
Vertex degree:

Texture Mapping
Mapping between the surface and the image. Each point
(x, y, z) on the surface has mapped coordinates (u, v) in the
texture image: P : M → [0, 1]× [0, 1]. P (x, y, z) = (u, v). And
this (u, v) then map to a color rgb defined in the image.
T (u, v) = r, g, b. This means that
Color(x, y, z) = T (P (x, y, z))..
Mesh parametererization desiderata: Minimal distortion:
preserve 2D angles, distances and areas. No stretch.

Lecture 3 - Light and Matter
Incandescence: Visible light produced from heat
Black body: Completly absorbs all wavelengths of thermal
radiation incident on it. Appear black and temperatur low
enough to not be self-luminous. In a perfect blackbody the
color spectrum of the emission is defined purely by the
temperature of the material. Planck’s Law: Defines color
spectrum of a black body at specific temperature. Planck’s law
accurately describes black body radiation. Shown here are a
family of curves for different temperatures. The classical
(black) curve diverges from observed intensity at high

frequencies. Luminescence:
Emission of light by a substance not resulting from heat.
(chemical electrical subatomic etc)
Atomic Emission: When an atom changes its energy level
(in does that in discrete steps - meaning as soon as it is fully
loaded it jumps possibly multiple levels to the next layer)
saving energy and then it jumps to lower level of layers and
releases energy by releasing wavelengths which is what we see.
Fluorescence: occurs when light striking a surface is briefly
absorbed and then re-emitted at a lower frequency. (e.g.
Blacklight)
Radiometry studies the measurement of electromagnetic
radiation. Radiometry assumes that light consists of photons.
State of a Photon: x: Position, ~w: Direction of travel, λ:
Wavelength. Each Photon has a method to calculate its

Energy level: E =
hc

λ
where h is Planck constant and c is

speed of light.

Flux Φ(A): Total amount of radiant energy (photons) passing

through a surface or space per unit of time!! Φ(A) =
J

s
= W .

Irradiance E(x): Flux per unit area. So we just measure the

flux over unit area. E(x) =
dΦ(A)

dA(x)
=

W

m2
. Imaging just if we

have a wall then average flux on that wall. Just divide through
area of wall.
Radiosity: Is just the flux leaving the surface per unit area.
Radiant Intensity: Is the directional flux - flux per solid
angle. We want to now exactly how much light hits our point
from a given direction for this we need radiant intensity. (2

vectors imagine 3d). I(~w) =
dΦ

d~w
=
W

sr
. Solid angle can be

written in integral form as follows:
∫ 2π
0 dφ

∫ π
0 sinθdθ =

∫
dΩ

Radiance: Radiance is useful because it indicates how much
of the power emitted, reflected, transmitted or received by a
surface will be received by an optical system looking at that

surface from a specified angle of view. Le,Ω = ∂2Φe
∂Ω ∂A cos θ

,

Some real life examples:
Point light source irradiance:

E =
φ

4πr2 = SurfaceArea
, φ =

∫
A E(x)dA

Radiant Intensity: Is better described as φ =
∫
Ω I(w)dw

over the unit sphere we have I = φ/4π
Radiance: φ =

∫
A

∫
Ω L(x,w)cosθdwdA

E(p): E(p) =
∫
Ω Li(p, ω)|costθ|dω =∫ 2π

0

∫ π/2
0 Li(p, θ, φ)cosθsinθdθdφ = πLi if same radiance from

all directions.



Lecture 4 - Ray Tracing

Ray:
r(t) = ~o+ t~d
Forward ray tracng (light tracing) Trace all lights from
light source and wait for a light to hit the camera / eye.
Backward ray tracing (camera tracing): Shoot light from
eye (primary ray) and wait for ray to hit light source. If we
shoot a ray to the lightsource directly from an intersection
then it is called shadow ray. Any other next ray after
intersection is called secondary ray.
Sphere equation: (implicit) ||x− c||2 − r2 = 0. To
intersect with ray just insert r(t) = o+ td in position of x and
solve for t.
Plane equation (implicit): ax+ by + cz + d = 0
(algebraic), (x− p) · n = 0 (geometric).
Barycententric coordinates conversions: Given bary
coord: λ1, λ2, λ3, x = λ1x1 + λ2x2 + λ3x3 where x1, x2, x3 are
the corresponding triangle vertices.
Given cartesian coordinates rearrange the above equation by
rewriting: λ3 = 1− λ2 − λ1 and then rarranging this for for
the unknown factors.
Triangle equation: Where triangle is just a plane where
the normal gets constructed from the 3 points (use cross
product (p2 - p1) x (p3 - p1)). To test if point is inside the
triangle use the barycentric coordinates and check if they sum
to one and are between 0 and 1.
BRDF (bidirectional reflectance distribution function:
) Ratio of outgoing light to incident light.
Diffuse Shading: Depends on surface orientation (~n), light
position ~wl, material parameter (albedo param), and is
independent of camera position.
Ld(x, ~w) = kdI(~w)cos(θ) = kdI(~w)~n · ~wl mind the lambertian
cosine law that states that the bigger the angle between the
surface and the light source the further out spread is the light
and therefore the less light falls on a single spot.

Lecture 5 - Ray Tracing Acceleration

Uniform Grids: Cut scene into uniform grid and shoot ray
through the grid. We can stop at first intersection. + Easy to
code. , - Uniform cells do not adapt to non uniform scenes, -
Hierarchical grids
KD Tree: 1) Compute bounding box and then recursively
split ells using axis aligned plane. Until max depth or min
num of objects. 2) When

Key Points:

1. Ray-surface intersections dominate computation in ray
tracing

2. spatial pre-sorting significantly reduces ray-surface
intersection (O(N) -¿ O(log(N)))

3. How to decide which is best? Uniform grids, hierarchical
grids, kd-trees, bsp-trees, bounding volume hieararchies.

Lecture 7 - Appareance Models

Isotropic
material: If the brdf is unchanged as we rotate the material
around the normal. (else anisotropic). Isotropic brdf are
functions of 3 variables, incoming angle, outcoming angle and

azimuth.
Lambertian reflection: We just have a constant brdf
(albedo) denoted ρ:
Lr(x, ~wr =

∫
H2 fr(x, ~wi, ~wr)Li(x, ~wi)cosθid ~wi) = Lr(x) =

ρ

π

∫
H2 Li(x, ~wi)cosθid ~wi

Index of



Refaction:
speedoflightinvacuum

speedoflightinmedium

Fresnel equation for Dielectrics:

ρ|| =
η2cosθ1 − η1cosθ2

η2cosθ1 + η1cosθ2
, ρ⊥ =

η1cosθ1 − η2cosθ2

η1cosθ1 + η2cosθ2

Lecture 8 - Microfacet Theory
Normalized Phong: Give a sennse of roughness by blurring
the reflected rays in a cone about the mirror direction.

fr( ~wo, ~wi) =
e+ 2

2π
( ~wr · ~wo)e with ~wr = (2~n(~n · ~wi)− ~wi)

which is just normal reflected direction as we know it.
Blinn-Phong: Blurr in normal domain instead of reflection

directions: fr( ~wo, ~wi) =
e+ 2

2π
( ~wh · ~n)e with wh =

~wi + ~wo

|| ~wi + ~wo
is the half-way vector.

Microfacet distribution: What fraction of faces
participates in the reflection ? Prob. distr must be normalized
over projected solid angle

∫
H2 D( ~wh)cosθhd ~wh = 1

Beckmann Distribution: Follows gaussian:

D( ~wh) =
1

πα2cos4θh
e
−
tan2θh

α2 The bigger α the rougher

(milkier) the surfaces is gonna be.
Shadow / Masking: Since microfacet can shadow each
other this term does account for that.

G(~w) =
2

1 + erf(s) +
1

s
√
πe−s2

, with s =
1

αtanθ
,

G( ~wi, ~wo) = G( ~wi) ·G( ~wo).
Denominator: Correction term coming from energy
conversation, jacobians.
Oren - Nayar Model: Same concept as the microfacet
models but assumes that the facets are diffuse! (No analytic
solution only fitted approximation)

Lecture 9 - Monte Carlo Integration
Condition:∫ b
a f(x) =

∫ b
a p(x)

f(x)

p(x)
= E[

f(x)

p(x)
] ≈

1

N

∑N
i=1

f(xi)

p(xi)
where

xi ∼ p(x) with the conditions that 1)
∫ b
a p(x) = 1 and

obviosuyl p(xi) can not be 0 for any of the values where
f(x) > 0.



Example sample from disk:

1. Defined desired probability: pc(x, y) =
1

π
if x2 + y2 < 1,

0 otherwise.

2. Find other coordinate system for convenient
parametrization of the samples: x = rcos(θ), y = rsinθ

3. relate the 2 pdfs in the two systems. T (r, θ) = (x, y),

pc(x, y) = pc(T (r, θ)) =
pp(r, θ)

|JT (r, θ)|

4. Computer marginal and conditional 1D Pdfs: Marginal
p(r) =

∫ 2π
0 pp(r, θ)dθ = 2r, Conditional PDF:

p(θ|r) =
pp(r, θ)

p(r)
=

1

2π

5. Compute CDFS: P (r), P (θ) and inverting yields:
r =
√
ξ1, θ = 2πξ2, P (r) = P (R <= r) =

∫ r
−∞ p(k)dk =∫ r

−∞ 2kdk = [k2]r0 = r2 = y =⇒
√
ξ = r

Lecture 10 - Direct Illumination
Energy equilibrium: Lo(x, ~wo) = Le(x, ~wo) + Lr(x, ~wo) =
Outgoing light at point x in direction w = Emitted + reflected
light
Rendering equation:
Lo(x, ~wo) = Le(x, ~wo) +

∫
H2 fr(x, ~wi, ~wo)Li(x, ~wi)cosθid ~wi

Direct illumination: If Li directly comes from an emitter
we call id direct illumination. (Recursion end). If it comes
from a surface of another object we call it indirect
illumination.
Direct illumination: Lo(x, ~wo) =
Le(x, ~wo) +

∫
H2 fr(x, ~wi, ~wo)Le(r(x, ~wi),− ~wi)cosθid ~wi So we

just care about reflection actually. Note that we should not
integrate over the hole hemisphere but just over the angle that
actually could hit our eye via reflection. (solid angle Ω).
Instead to sample over direction we can just sample from the

lightsource which leads to a much more efficiency in many
cases:

Lr(x, z) =
∫
Ae

fr(x, y, z)Le(y, x)V (x, y)
|cosθi||cosθo|
||x− y||2

dA(y)

Point light: Omnidirectional emission from a single point.

Intensity: I =
Φ

4π
Sphere light: Irradiance is independent of radius!
(Assuming it always emits the same power)

Lecture 11 - Importance sampling /
MIS

Importance Sampling Emissive Surfaces:

Average Sampling: Sample from multiple distributions by

averaging their PDF:
1

N

∑N
i=1

f(xi)

0.5(p1(xi) + p2(xi))
when

sampling later from the average pdf just sample one of the pdfs
first uniformly and then specifically from that distribution.
MIS: So of course just averaging is not the best solution. So
weighted average would be good for M possible strategies.

E[F ] =
∑M
s=1

1

Ns

∑Ns
i=1 ws(xi)

f(xi)

ps(xi)
, with

∑M
s=1 ws(x) = 1

Balance Heuristic: ws(x) =
Nsps(x)∑
j Njpj(x)

Power heuristic: ws(x) =
(Nsps(x))β∑
j(Njpj(x))β

Fireflies: We have very high variance when the pdf is not
proportional to the integrand. If we have rare samples with

huge contribution: FN =
1

N

∑N
i=1

f(xi) = big

p(xi) = small
So strategy

is that every pdf(strategy) should be proportional to a part of
the integral.

Lecture 12 - Global illumination

More Heckbert:

1. Direct Illumination: L(D|S)E

2. Indirect Illumination: L(D|S)(D|S) + E

3. Classical Ray tracing: LDS ∗ E

4. Full Global Illumination: L(D|S) ∗ E

5. Diffuse inter-reflections: LDD + E

6. Caustics: LS +DE

Russian Roulette: Termination of recursive algorithm:

E[F ′] = (1− q) · (
E[F ]

1− q
) + q · 0 = E[F ] where F =

F

1− q
if

ξ > q for the termination probability q and 0 otherwise. But
be careful, it always increases variance but it always reduces
time per sample and can improve efficiency (if small
contribution, samples tend to be terminated).

Path Tracing - Summary:

1. + Full solution to the rendering equation, simple to
implement

2. - Slow converge,ce (4x more samples to half error),
Robustness issues, (caustics (LS+DE) is problematic),
No reuse or caching of computation, General sampling
issues.



Path Integral Form of Measurement Eq

Monte Carlo Path Estimator:
1

N

∑N
i=1

We(xi,0, xi,1)Le(xi,k, xi,k−1)T (xi))

p(xi)
with

p(xi) = p(x0, x1, ..., xk−1, xk)

Lecture 13 - Sampling and Antialising
Sampling Algorithms:

1. Random sampling: Iterate: Randomly pick a point

2. Stratified sampling: Lay grid over area to sample, then
For each startum / grid area, Randomly pick a point in
that grid

3. Stratified sampling - correlated: For each strata
randomly pick the same offset

4. Dart throwing: Iterate: Randomly pick a point, if it is
not within the region of others, add the point

Low discrepancy patterns, discrepancy: Ratio of space
vs Ratio of points

Lecture 14 - Participating Media
Properties: Given:
Absorbtion coefficient: σa(x),
Scattering coefficient: σs(x),
Phase function: fp(x, ~w′, ~w).
Derived:
Extinction coefficient: σt(x) = σa(x) + σs(x)

Albedo: α(x) =
σs(x)

σt(x)
Mean free path: E[1/σt(x)]

Transmittance: Tr(x, y) = e−
∫ ||x−y||
0 σt(t)dt

Radiative Transport Equation:

Beer-Lambert Law: Expresses remaining radiance after
traveling finite distance trough a medium with constant
extinction coefficient. The fraction is referred to as
transmittance:
Lz = (radiance after travelling z)

L0 = (Radiance at beginning of beam)
= e−σtz In

Homogenous volume: Tr(x, y) = e−σt||x−y||

Heteroeneous (spatially varying σt):

Tr(x, y) = e−
∫ ||x−y||
0 σt(t)dt

Transmittance is multiplicative.
Phase function fp Describes distribution of scattered light
analog of BRDF but for scattering in media.

Unfiorm scattering: fp(~w′, ~w) =
1

4π
For anistropic scattering: use henyey greenstein phase
function (and for cheap approx schlicks as usual xD )

Delta Trackgin:

1. Unbiased technique for free-path sampling

2. inspired by rejection sampling

3. Idea: Add a fictitious volume, combined volume (real +
fictitious) is homogeneous, generate tentative free-paths
analytically, probabilitcally reject / accept collisions

based on local concentrations of real vs fictitious
volumes.

Volumetric Photon Mapping (same as regular photon
mapping)

1. Shoot photons from light sources

2. Construct a blanced kD-tree for the photons

3. Assign a radius for each photon (photon-discs)

4. Create acceleration structure of photon spheres.

5. Render: For each ray through the medium accumulate
all photon discs that intersect ray. (Beam density
estimation)

There are some differences between tracing photons and
tracing rays. The main difference is that when a photon
undergoes refraction, the power carried by the photon does not
change. In contrast, the radiance of a ray must be weighted by
the square of the relative indices of refraction Russian
roulette photon: 300 photons with power 1.0 W hit a
surface with reflectance 50% instead of 300 photons with
power 0.5 W RR will make 150 photons continue with power
1.0 Very important! p = 1−min(1, φ′/φ) if rand() ¡ p
terminate else φ′ = φ′/(1− p)
Radiance estimation:

Lr(x, ~w) ≈
∑k
p=1 fr(x, ~wp, ~w)

φp

A = πr2
k

where r is radius to k

nearest photon. Also possible is to just define radius r and
search for all photons in radius r.
Convergence conditions: Infinitely small radius, infinite
number of nearby photons (infinite storage requirement!)
Progressive Photon Map: Shrink the kernel from image
to image and then at the end average all images together. The

radius for image is given by: r2
i+1 =

i+ α

i+ 1
r2
i with α low is fast

shrinking of kernel and high α is slow shrinking. convergence
need alpha in 0,1. Converges withour requiring infinite
memory storage!

Lecture 15 - ML in rendering
General approach: Scattered direct illumination estimated
via MC and Scattered indirect illumination predicted using

NN.
Path Guiding: Idea Learn a coarse approximiation of
incident radiance Li(x, ~wi) and use it for directional sampling.
Learning is performed in a preprocess or progressively as we
render the scene.



Lecture 16 - Subsurface Scattering
Common in all non metals

Highly - Scattering Materials (e.g. Milk) te distribution
of light approaches uniformity. g = 0.9
Diffuse approximation:

More on Subsurface scattering

Lecture 17 - Bidirectional Rendering
Radiance vs Importance: Radiance: Emitted from light
sources, describes amount of light traveling within differential
beam. Importance ”emitted” from sensors, describes the
response of the sensor to radiance traveling within a

differential beam.
Still not robust enough for: LSDSE (difficult for any
unbiased method)

Lecture 18 - Animation
Embeddings: Offest handles, lower dimensionality controls.
e.g. bounding box with 4 vertices with which we can change
the appearance of the underlying model.
Mesh/lattice-based: Parametric curves, surface, volumes.

Mesh-free Hierarchical deformations (Skinning - via
skeleton). Blend shapes.

Lattice based embedding: Weights are distances to the
nodes pk at rest state. Given any basis-function:
x(u, v) =

∑
k pkBk(u, v) where Bk is bilinear function in 2D.

Skinning: Transfer the linear transformations of the joints to
the vertices. Start with rest shape Vi(0) and assign each
vertex to joint. Deform vertices in the joint local frame of
reference. Ak = TkRk (4x4 Affine Transformation of joint k)
Blend shapes: Vi(0) Neutral shape nesg vertuces u.
Deformed Mesh V ′i = Vi(0) +

∑
k

∑
i w

kV ki

Lecture 19 - Image based rendering
Overview: In computer graphics and computer vision,
image-based modeling and rendering (IBMR) methods rely on
a set of two-dimensional images of a scene to generate a
three-dimensional model and then render some novel views of
this scene. Image based modeling: 1) Select building
blocks, 2) Align them in each image 3) Solve for camera pose
and block parameters.

Lecture 20 - Light field
An image is a set of rays collected at a location within a
certain field of view. Whereas a light field is a set of rays
collected at all locations to all directions. The light field is a
vector function that describes the amount of light flowing in
every direction through every point in space. The space of all
possible light rays is given by the five-dimensional plenoptic
function, and the magnitude of each ray is given by the
radiance https : //en.wikipedia.org/wiki/Light field

Lecture 21 - Denoising
Non Local Means
Non-local means is an algorithm in image processing for image
denoising. Unlike ”local mean” filters, which take the mean
value of a group of pixels surrounding a target pixel to smooth
the image, non-local means filtering takes a mean of all pixels

in the image, weighted by how similar these pixels are to the
target pixel. This results in much greater post-filtering clarity,
and less loss of detail in the image compared with local mean
algorithms

u(p) = 1
C(p)

∑
q∈Ω v(q)f(p, q), with

u(p)bzw.v(p) = valueatthatspecificpixel.,and

f(p, q) = e
− |B(q)−B(p)|2

h2 is the gaussian kernel but the
difference is over the spatial difference but over the difference
of the neighborhoods: B(p) = 1

|R(p)|
∑
i∈R(p) v(i) where Ω is

the

Bilinear Filtering
A bilateral filter is a non-linear, edge-preserving, and
noise-reducing smoothing filter for images. It replaces the
intensity of each pixel with a weighted average of intensity
values from nearby pixels. This weight can be based on a
Gaussian distribution. Crucially, the weights depend not only
on Euclidean distance of pixels, but also on the radiometric
differences (e.g., range differences, such as color intensity,
depth distance, etc.). This preserves sharp edges.

Filter:

Ifiltered(x) =
1

Wp

∑
xi∈Ω

I(xi)fr(‖I(xi)− I(x)‖)gs(‖xi − x‖),

with normalization term:
Wp =

∑
xi∈Ω

fr(‖I(xi)− I(x)‖)gs(‖xi − x‖)

Ifiltered is filtered image, I is original image to be filtered, x
are coordinates of the current pixel to be filtered, Ω is the
window centered at x, fr is the range kernel for smoothing
differences in intensities, gs is the spatial kernel for smoothing
differences in coordinates.

alt =

”w(i, j, k, l) = exp

(
−

(i− k)2 + (j − l)2

2σ2
d

−
‖I(i, j)− I(k, l)‖2

2σ2
r

)
,”

with the sigmas as smoothing parameters. And after
calculating the weights, normalization is important.

Appendix A - Rewriting the Light
integral
L(x→ x′) = L(x,w) where x, x′ are both points on scene

surfaces and w = ˆx′ − x is the unit vector pointing from x to
x’. Then the bsdf can be rewritten as:
fs(x→ x′ → x′′) = fs(x′, wi → wo) where wi = x− x′ and

wo = x′′ − x′
Then the three-point form of the light transport can be
rewritten as: L(x′ → x′′) = Le(x′ → x′′) +

∫
M L(x→

x′)fs(x→ x′ → x′′)G(x↔ x′)dA(x)



Area Integral Exitant radiance from a point p′ to a point
p: L(p′ → p) = L(p′, ω) with ŵ = p− p′ (if p, p’ visible).
THEN BSDF goes to: f(p′′ → p′ → p) = f(p′, ωo, ωi) with
ωo = x− x′ and ωi = x′′ − x′

The three-point
form of the light transport equation converts the integral to be
over the domain of points on surfaces in the scene, rather than
over directions over the sphere. It is a key transformation for
deriving the path integral form of the light transport equation.
Transforming the integral: Multiply by the jacobian that
relates solid angle to area in order to transform the light from
integral over direction to one over surface area which is:
|cosθ′|/r2. This and visibility and source costθ gets combined

into a single G term: G(p↔ p′) = V (p↔ p′)
|cosθ||cosθ′|
||p− p′||2

.

Substituting this into the light transport equation leads to:

L(p′ → p) = Le(p′ → p) +
∫
A f(p′′ → p′ → p)L(p′′ →

p′)G(p′′ ↔ p′)dA(p′′)
The Integral over Paths
One of the main motivations for using path space is that it
provides an expression for the value of a measurement as an
explicit integral over paths, as opposed to the unwieldy
recursive definition resulting from the energy balance equation.
So we define it by:
L(p1 → p0) = Le(p1 → p0) +

∫
A Le(p2 → p1)f(p2 → p1 →

p0)G(p2 ↔ p1)dA(p2) +
∫
A

∫
A Le(p3 → p2)f(p3 → p2 →

p1)G(p3 ↔ p2)×f(p2 → p1 → p0)G(p2 ↔ p1)dA(p3)dA(p2)+...
Not that we only multiply the path with no further light
multiplication.

Appendix B - Transforming between
Distributions
Given: Xi ∼ pX(x), and Yi = y(Xi)
Question: What is distribution of new variable Yi?
Derivation: =⇒ P (Y ≤ y(x)) = P (X ≤ x) this implies
that Py(y) = Py(y(x)) = PX(x) then

PY (y)
dy

dx
= pX(x) =⇒ pY (y) =

∣∣ dy
dx

∣∣−1
pX(x) for

multidimensional: pY (y) = pY (T (x)) =
pX(x)

|JT (x)|

Appendix C - Some mathy definitions
Solid angle: Area of a set of points on the unit sphere. (This
points can be specified by 2 angles. Azimuth and Zenith.)
Integral from direction into spherical: dw = sin(θ)dθdφ

Integral from directions into area: dω =
dAcosθ

r2
where

dA is some area and θ is angle between area-normal and r is
the distance between the point p from where we look at the
surface and the surface.
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