
Game Theory Exam 2018 Cheat
Sheet

Non- Cooperative Game Theory
Players: N = 1, 2, .., n
Actions/strategies: Each player chooses si from his own
finite strategy set: Si for each i ∈ N resulting in a tuple that
describes strategy combination: s = (s1, ..., sn) ∈ (Si)i∈N
Payoff outcome: ui = ui(s) for some chosen strategy
best-response: Player i’s best-response to the strategies s−i

played by all others is the strategy s∗i ∈ Si such that

ui(s
∗
i , si) ≥ ui(s‘i, s−i)∀s‘i ∈ Siands

‘
i 6= s∗i

Pure - strategy (Nash Equilibrium): All strategies are
mutual best responses:

ui(s
∗
i , si) ≥ ui(s‘i, s−i)∀s‘i ∈ Siands

‘
i 6= s∗i

Cooperative game
Population of players: N = 1, 2, ..., n
Colations: C ⊂ N form in the population and become
players results in a coalition structure: ρ = {C1, C2, ..., Ck}
Payoffs: Φ = {Φ1, ...,Φn} and we need a sharing rule for for
the individual player resulting in: Φi = Φ(ρ, ”sharing rule”)
characteristic function form (CFG): The Game is defined
by 2-tuple G(v,N) where Characteristic function:
v : 2N → R where 2N are all possible coalitions.
transfer of utils: occures when we share the value of the
characteristic function among the participants of the coalition.
and feasibility is then when:

∑
i∈C Φi ≤ v(C)

Superadditivity: If two coalitions C, S are disjoint then
v(C) + v(S) ≤ v(C ∪ S)
The Core of a superadditive G(v, N) consists of all outcomes
where the grand coalition forms and payoff allocations
Φ = (Φ1, ...,Φn) are:

1. Pareto efficient:
∑

i∈N Φi = v(N) so whole value is out

2. Unblockable: ∀C ⊂ N,
∑

i∈C Φi ≥ v(C) so payout for
each individual is bigger then if it would act
alone(individual rational) or in a
sub-coalition(coalitional rational) of N.

nonempty core: if and only if the game is balanced.
balancedness:

1. Balancing weight: attached to each Coalition C:
α(C) ∈ [0, 1]

2. Balanced family: A set of balancing weights is balanced
family if

∑
i∈C α(Ci) = 1

3. Balancedness in superadditivity: requires that for all
balanced families: v(N) ≥

∑
C∈2N α(C)v(C)

Shapley value
Pays each player average marginal contributions. Marginal
contributions: For any S: i ∈ S, think of marginal
contributions as : MCi(S) = v(S)− v(S \ i)
Given some G(v,N), an acceptable allocation/value x∗(v)
should satisfy:

1. Efficiency:
∑

i∈N x∗i (v) = v(N)

2. Symmetry: if for any two players i and j,
v(S ∪ i) = v(S ∪ j) so player i,j same influence on value
v(S). then x∗i (v) = x∗j (v)

3. Dummy player if for any i, v(S ∪ i) = v(S) for all S
then x∗i (v) = 0

4. Additivity if u,v are two characteristic functions then
x∗(v + u) = x∗(v) + x∗(u)

Shapley function:

Φi(v) =
∑

S∈N,i∈S =
(|S|−1)!(n−|S|)!

n!
(v(S)− v(S \ i)). It pays

average marginal contributions.
Non transferable-utility cooperative game: Game:
G(v,N) outcome: partition ρ = C1, C2, ..., Ck implies directly
a payoff allocation. e.g. only coalitions of pairs. Deferred
acceptance: For any marriage problem, one can make all
matchings stable using the deferred acceptance algorithm.
1 Initialize) all mi ∈M and all wi ∈W are single.
2 Engage) Each single man m ∈M proposes to his preferred
woman w to whom he has not yet proposed. a) If w is single,
she will become engaged with her preferred proposer. b) Else
w is already engaged with m’: if w prefers proposer m over m’
she becomes engaged with m and m’ becomes single. If not
(m’, w) remain engaged. c) All proposers wo do not become
engaged remain single. 3 Repeat) If there exists a single man
after Engage repeat Engage. Else Terminate 4 Terminate)
Marry all engagements

Preferences and utility
A binary relation � (weakly prefers), � (prefers), ∼
(indifferent) on a set X is a non-empty subset P ⊂ X ×X. We
write x � y iff (x, y) ∈ P
Assumptions on preferences:

1. Completeness: ∀x, y ∈ X : x � yory � xorboth so we
have some preference for any element to any other in
the set.

2. Transitivity: ∀x, y, z ∈ X : if x � y and y � z then
x � z

3. Continuity:
W (x) = y ∈ X : x � y,B(X) = y ∈ X : y � x so we
have once all below x and once all above x then
continuity tells us that we do not have some kind of big
gap or between these. ∀x ∈ X : B(x) and W (x) are
closed sets.(including their boundary points)

4. Independence of irrelevant alternatives: ∀x, y, z ∈ X :
x � y ⇒ (1− λ)x+ λz � (1− λ)y + λz = x+ z � y + z

A utility function for a binary relation � on a set X is a
function u : X → R such that

u(x) ≥ u(y)⇔ x � y

so give the preference an actual value and still preserving the
preference. There exists such a utility function for each
complete, transitive, positively measurable and continuous
preference on any closed or countable set.
Ordinal utility function: difference between u(x) and u(y)
is meaningless. Only u(x) ≥ u(y) is meaningful.
Cardinal utility function: A utility function where
differences between u(x) and u(y) are meaningful as they
reflect the intensity of preferences. (invariant to positive affine
transformations)
Utils: An even stronger statement would be that there is a
fundamental measure of utility. say one ”util”. It is not
invariant to any transformation.
Lottery Let X be a set of outcomes then a lottery on X
means nothing but a probability distribution on X. The set of
all lotteries on X is usually denoted by ∆(X). E.g.
X = (x1, ..., xK) then a lottery is represented by (p1, ..., pK)
and they should sum to one.
Decision problem under risk: Is then when the decision
maker has to choose a lottery from a Set of available lotteries:
C ⊆ ∆(X)
St. Petersburg Paradox: A rational decider would prefer
lotteries with higher expected payoff. E[l] ¿ E[l’] but this leads
to a paradox when using infinity expected values.
Expected utility maximization: Was introduced to solve
St. Petersburg Paradox. So instead of weighting lotteries
directly on their payoff we weight them on their utility
function.
Utility function on lotteries: A preference relation � on
∆(X) is sait to be representable by a utility function U
whenever for every lotteries p := (p1, ..., pk) and
p′ := (p′1, ..., p

′
k), p � p′ only when U(p) ≥ U(p′)

Bernouilli function is the utility function over the outcomes
of the lottery. So X = (x1, ..., xK) then bernouilli function is:
u : X → R+ by considering all the axioms that hold for utility
functions.
Expected utility function: Is a utility function on the set
of ∆(X) of utilities.
Bernouilli function / von Neumann morgenstern
utility function: If � is a binary relation on X representing
the agent’s preferences over lotteries over T. If there is a
function v : T → R such that

x � y ⇔
m∑

k=1

xkv(τk) ≥
m∑

k=1

ykv(τk)

then

u(x) =

m∑
k=1

xkv(τk)

where v is called a Bernouilli function, and where xi are the
probabilities of event τi happening
Existence of Neumann-Morgenstern utility function:
Let � be a complete, transitive and continuous preference



relation on X = ∇(T ) for any finite set T. Then � admits a
utility function u of the expected-utility form iff � meets the
axiom of independence of irrelevant alternatives.
Sure thing principle (Savage): A decision maker who
would take a certain Action A if he knew that event B
happens should also take Action A if he new that B not
happens and also if he knew nothing about B. (This is
equivalent to independence of irrelevant alternatives)
Risk neutral: An agent is risk-neutral iff he is indifferent
between accepting and rejecting all fair gambles that is for all
α, τ1, τ2 :

E[u(lottery)] = α · v(τ1) + (1− α) · v(τ2) = u(ατ1 + (1− α)τ2)

Risk averse: An agent is risk averse iff he rejects all fair
gambles for all α, τ1, τ2 :

E[u(lottery)] = α · v(τ1) + (1− α) · v(τ2) < u(ατ1 + (1− α)τ2)

Since g(λα+ (1− λ)β) > λg(α) + (1− λ)g(β) is the def. of
concavity to be risk averse the utility function has to be
strictly concave.
Risk seeking: An agent is risk seeking iff he strictly prefers
all fair gambles for all α, τ1, τ2 :

E[u(lottery)] = α · v(τ1) + (1− α) · v(τ2) > u(ατ1 + (1− α)τ2)

Since g(λα+ (1− λ)β) < λg(α) + (1− λ)g(β) is the def. of
convexity to be risk seeking the utility function has to be
strictly convex.

Normal form games
Normal form:

1. Players: N = 1, ..., n

2. Strategies: For every player i, a finite set of strategies,
Si with typical strategy si ∈ Si.

3. Payoffs: A function ui : (s1, ..., sn)→ R mapping
strategy profiles to a payoff for each player i.
u : S → Rn

Normal form triplet: G = (N, {Si}i∈N , {ui}i∈N )
Strategy profile: s = (s1, ..., sn) is called a strategy profile.
Is a collection of strategies, one for each player. If s is played,
player i receives ui(s)
Opponents strategies: Write s−i for all strategies except
for the one of player i. So a strategy profile may be written as
s = (si, s−i) Dominance:

1. Strict Dominance: si strictly dominates si‘ if
ui(si, s−i) > ui(si‘, s−i)∀s−i

2. Weak Dominance: si strictly dominates si‘ if
ui(si, s−i) ≥ ui(si‘, s−i)∀s−i

3. Dominated: A strategy si‘ is strictly dominated if there
is an si that strictly dominates it.

4. A strategy si is strictly dominant if it strictly
dominates all si‘ 6= si

So obvs. we do not play a dominated strategy no matter what
others are doing.
Dominant-Strategy Equilibrium: The strategy profile s∗

is a dominant-strategy equilibrium if for every player i,
ui(s

∗
i , s−i) > ui(si, s−i) for all strategy profiles s = (si, s−i)

Nash Equilibrium: is a strategy profile s∗ such that for
every player i,

ui(s
∗
i , s
∗
−i) ≥ ui(si, s∗−i)∀si

So no player has any regrets hi could not have done better
when all other played like they have.
Best reply function:
Bi(s−i) = {si|ui(si, s−i) ≥ ui(si‘, s−i)∀s‘i given the actions
from our opponents chose our best action. and with the best
function the Nash equilibrium gets: s∗ is a Nash
equilibrium iff s∗i ∈ Bi(s

∗
−i)∀i

Mixed strategy: A mixed strategy σ1 for a player i is any
probability distribution over his or her set Si of pure
strategies. The set of mixed strategies is:

δ(Si) = {xi ∈ R|Si|
+ :

∑
h∈Si

xih = 1

Mixed extension The mixed extension of a game G has
players, strategies and payoffs: Γ = (N, {Si}i∈N , {Ui}i∈N )
where

1. Strategies are probability distributions in the the set
δ(Si) meaning we do not choose a strategy
deterministically but we choose a strategy according to
the distribution σi

2. Ui is player i‘s expected utility function assigning a real
number to every strategy profile γ = (γ1, ..., γn).
Ui(σ) =

∑
s ui(s)

∏
j∈N σj(sj)

All the things like best response and nash equilibrium hold
also for mixed strategies!
How to find mixed Nash equilibria:

1. Find all pure strategy Nash equilibria.

2. Check wether there is an equilibrium in which row
mixes between several of her strategies:

(a) Identify candidates:

i. if there is such an equilibrium then each of
these strategies must yield the same expected
payoff given column’s equilibrium strategy.

ii. Write down these payofss ans olve for
column’s equilibrium mix.

iii. Reverse: Look at the strategies that column
is mixing on and solve for rows equilibrium
mix.

(b) Check candidates:

i. The equilibrium mix we found must indeed
involve the strategies for row we started with.

ii. All probabilities we found must indeed be
probabilities (between 0 and 1)

iii. Neither player has a positive deviation

Nash Theorem: Every finite game has at least one ”Nash”
Equilibrium in mixed strategies!

Games / Extensive form
Trembling hand / perfect equilibrium: Take the strategy
that is played by nash equilibrium. E.g. (a1, b1) then check if
E[u(a1)] = u(a1, b1)(1− ε) + u(a1, b2)ε where b2 is played
with some error probability ε. And despite the error this must
be greater then as if player 1 would play a2 instead:
E[u(a2)] = u(a2, b1)(1− ε) + u(a2, b2)ε if E[u(a1)] > E[u(a2)]
the nash equilb. is perfect equilibrium.
Extensive form game: Players, Basic structure is a game
tree with nodes a ∈ A, a0 is root of tree. And nodes can bee
Decision nodes where a player makes a decision or a Chance
node where nature plays according to some probability
distribution. (If 2 nodes are connected we have no information
from above and we have to decide based on nash equilibrium. )
Subgames if a node has been reached we have full information
at its root node and we can decide as if we’re in isolation.
Strategy set in subgame: A strategy for a player is over
the whole game so if we have 2 subgames with possibility a,b
then we have (a,a), (a, b), (b, a), (b, b) where we
simultaneously describe as we would play both subgames
despite the fact that we play only 1. (important if we have the
same information in 2 subgames (shown via connection in
between the subnodes) then we have only 2 strategies(a,b).

Evolutionary Game Theory
Symmetric two-player games: G = (N, {Si}i∈N , {ui}i∈N .

1. Players: N = {1, 2}

2. Strategies: S1 = S2 = S with typical strategy s ∈ S

3. Payoffs: A function ui : (h, k)→ R mapping strategy
profiles to a payoff for each player i such that for all
h, k ∈ S: u2(h, k) = u1(k, h). So it does not really
matter what action is chosen the payoff stays the same
for both players (in good or bad).

Symmetric Nash Equilibrium: is a strategy profile σ∗ such
that for every player i,

ui(σ
∗, σ∗) ≥ ui(σ, σ∗)∀σ

, ”if no player has an incentive to deviate from their part in a
particular stategy profile, then it is Nash Equilibrium.
In a symmetric normal form game there always exists
a symmetric Nash Equilibrium. (Not all Nash Equilibria
of a symmetric game need to be symmetric.
Evolutionary stable strategy(ESS): A mixed strategy
σ ∈ δ(S) is an evolutionary stable strategy (ESS) if for every
strategy τ 6= σ there exists ε(τ) ∈ (0, 1) s.t. ∀ε ∈ (0, ε(τ)) :

U(σ, ετ + (1− ε)σ) > U(τ, ετ + (1− ε)σ)



A mixed strategy σinδ(S) is an evolutionary stable strategy
if:

U(τ, σ) ≤ U(σ, σ)∀τ
U(τ, σ) = U(σ, σ)⇒ U(τ, τ) < U(σ, τ)∀τ 6= σ

Experimential Game Theory
perfect rationality

1. Common knowledge about the structure of the game
and the payoffs

2. Common beliefs: players have beliefs about each others
behaviour these believes are correct

3. Optimization: individual behavior is governed by
optimization / maximization in terms of expected
utilities.

Pure self-interest:

1. narrow self interest: agent cares about own material
payoff only

2. no concern for other players payoff

3. no consideration of the effects of his actions on
upholding higher order norms or similar

4. decisions are not subject so social influence

More realisticly: Players follow norms / social influences,
care about others. Also they know little about how their

choices will affect others and know little about the overall
game.
Ultimatum Game: One side proposes moves first. Makes a
proposal as to how to split a cake. Other side eather accepts
and both get their share or rejects and both get zero. Nash
equilibria: Any proposal made responder accepts. Subgame
perfection: proposer takes all, accept nevertheless.
Public good game: Choose how much you want to
contribute between 0 and 20. What you don’t contribute is
autom. yours. The whole contribution gets multiplied by 3
and equal shares get paid back to all players. Nash equilibrium
: Universal non-contribution.
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