Game Theory Exam 2018 Cheat Shapley value Sheet

Non- Cooperative Game Theory

Players: $N = 1, 2, ..., n$

Actions/strategies: Each player chooses s_i from his own finite strategy set: S_i for each $i \in N$ resulting in a tuple that describes strategy combination: $s = (s_1, ..., s_n) \in (S_i)_{i \in N}$ **Payoff outcome:** $u_i = u_i(s)$ for some chosen strategy **best-response:** Player i's best-response to the strategies s_{-i} played by all others is the strategy $s_i^* \in S_i$ such that

 $u_i(s_i^*, s_i) \geq u_i(s_i^*, s_{-i}) \forall s_i^* \in S_i$ and $s_i^* \neq s_i^*$

Pure - strategy (Nash Equilibrium): All strategies are mutual best responses:

$$
u_i(s_i^*, s_i) \ge u_i(s_i^*, s_{-i}) \forall s_i \in S_i \text{ and } s_i^* \ne s_i^*
$$

Cooperative game

Population of players: $N = 1, 2, ..., n$ Colations: $C \subset N$ form in the population and become **players** results in a coalition structure: $\rho = \{C_1, C_2, ..., C_k\}$ **Payoffs:** $\Phi = {\Phi_1, ..., \Phi_n}$ and we need a sharing rule for for the individual player resulting in: $\Phi_i = \Phi(\rho, "sharing rule")$ characteristic function form (CFG): The Game is defined by 2-tuple $G(v, N)$ where **Characteristic function:** $v: 2^N \to R$ where 2^N are all possible coalitions. transfer of utils: occures when we share the value of the characteristic function among the participants of the coalition. and **feasibility** is then when: $\sum_{i \in C} \Phi_i \leq v(C)$ Superadditivity: If two coalitions C, S are disjoint then $v(C) + v(S) \leq v(C \cup S)$

The Core of a superadditive $G(v, N)$ consists of all outcomes where the grand coalition forms and payoff allocations $\Phi = (\Phi_1, ..., \Phi_n)$ are:

- 1. Pareto efficient: $\sum_{i \in N} \Phi_i = v(N)$ so whole value is out
- 2. Unblockable: $\forall C \subset N$, $\sum_{i \in C} \Phi_i \geq v(C)$ so payout for each individual is bigger then if it would act alone(individual rational) or in a sub-coalition(coalitional rational) of N.

nonempty core: if and only if the game is balanced. balancedness:

- 1. Balancing weight: attached to each Coalition C: $\alpha(C) \in [0,1]$
- 2. Balanced family: A set of balancing weights is balanced family if $\sum_{i \in C} \alpha(C_i) = 1$
- 3. Balancedness in superadditivity: requires that for all balanced families: $v(N) \ge \sum_{C \in 2^N} \alpha(C)v(C)$

Pays each player average marginal contributions. Marginal contributions: For any S: $i \in S$, think of marginal contributions as : $MC_i(S) = v(S) - v(S \setminus i)$ Given some $G(v, N)$, an acceptable allocation/value $x^*(v)$ should satisfy:

- 1. Efficiency: $\sum_{i \in N} x_i^*(v) = v(N)$
- 2. Symmetry: if for any two players i and j, $v(S \cup i) = v(S \cup j)$ so player i,j same influence on value v(S). then $x_i^*(v) = x_j^*(v)$
- 3. Dummy player if for any i, $v(S \cup i) = v(S)$ for all S then $x_i^*(v) = 0$
- 4. Additivity if u,v are two characteristic functions then $x^*(v+u) = x^*(v) + x^*(u)$

Shapley function:

 $\Phi_i(v) = \sum_{S \in N, i \in S} \frac{(|S|-1)!(n-|S|)!}{n!} (v(S) - v(S \setminus i)).$ It pays average marginal contributions.

Non transferable-utility cooperative game: Game: $G(v, N)$ outcome: partition $\rho = C_1, C_2, ..., C_k$ implies directly a payoff allocation. e.g. only coalitions of pairs. Deferred acceptance: For any marriage problem, one can make all matchings stable using the deferred acceptance algorithm. 1 Initialize) all $m_i \in M$ and all $w_i \in W$ are single. **2 Engage**) Each single man $m \in M$ proposes to his preferred woman w to whom he has not yet proposed. a) If w is single, she will become engaged with her preferred proposer. b) Else w is already engaged with m': if w prefers proposer m over m' she becomes engaged with m and m' becomes single. If not (m', w) remain engaged. c) All proposers wo do not become engaged remain single. 3 Repeat) If there exists a single man after Engage repeat Engage. Else Terminate 4 Terminate) Marry all engagements

Preferences and utility

A binary relation \succeq (weakly prefers), \succeq (prefers), \sim (indifferent) on a set X is a non-empty subset $P \subset X \times X$. We write $x \succeq y$ iff $(x, y) \in P$

Assumptions on preferences:

- 1. Completeness: $\forall x, y \in X : x \succ yory \succ xorboth$ so we have some preference for any element to any other in the set.
- 2. Transitivity: $\forall x, y, z \in X : \text{if } x \succ y \text{ and } y \succ z \text{ then}$ $x \succeq z$
- 3. Continuity:

 $W(x) = y \in X : x \succeq y, B(X) = y \in X : y \succeq x$ so we have once all below x and once all above x then continuity tells us that we do not have some kind of big gap or between these. $\forall x \in X : B(x)$ and $W(x)$ are closed sets.(including their boundary points)

4. Independence of irrelevant alternatives: $\forall x, y, z \in X$: $x \succ y \Rightarrow (1 - \lambda)x + \lambda z \succ (1 - \lambda)y + \lambda z = x + z \succ y + z$ A utility function for a binary relation \succeq on a set X is a function $u: X \to \mathbb{R}$ such that

 $u(x)$ > $u(y) \Leftrightarrow x \succ y$

so give the preference an actual value and still preserving the preference. There exists such a utility function for each complete, transitive, positively measurable and continuous preference on any closed or countable set.

Ordinal utility function: difference between $u(x)$ and $u(y)$ is meaningless. Only $u(x) > u(y)$ is meaningful.

Cardinal utility function: A utility function where differences between $u(x)$ and $u(y)$ are meaningful as they reflect the intensity of preferences. (invariant to positive affine transformations)

Utils: An even stronger statement would be that there is a fundamental measure of utility. say one "util". It is not invariant to any transformation.

Lottery Let X be a set of outcomes then a lottery on X means nothing but a probability distribution on X. The set of all lotteries on X is usually denoted by $\Delta(X)$. E.g.

$$
X = (x_1, ..., x_K)
$$
 then a lottery is represented by $(p_1, ..., p_K)$ and they should sum to one.

Decision problem under risk: Is then when the decision maker has to choose a lottery from a Set of available lotteries: $C \subseteq \Delta(X)$

St. Petersburg Paradox: A rational decider would prefer lotteries with higher expected payoff. E[l] ¿ E[l'] but this leads to a paradox when using infinity expected values.

Expected utility maximization: Was introduced to solve St. Petersburg Paradox. So instead of weighting lotteries directly on their payoff we weight them on their utility function.

Utility function on lotteries: A preference relation \succeq on $\Delta(X)$ is sait to be representable by a utility function U whenever for every lotteries $p := (p_1, ..., p_k)$ and $p' := (p'_1, ..., p'_k), p \succeq p'$ only when $U(p) \ge U(p')$

Bernouilli function is the utility function over the outcomes of the lottery. So $X = (x_1, ..., x_K)$ then bernouilli function is: $u: X \to \mathbb{R}_+$ by considering all the axioms that hold for utility functions.

Expected utility function: Is a utility function on the set of $\Delta(X)$ of utilities.

Bernouilli function / von Neumann morgenstern utility function: If \succeq is a binary relation on X representing the agent's preferences over lotteries over T. If there is a function $v: T \to \mathbb{R}$ such that

$$
x \succeq y \Leftrightarrow \sum_{k=1}^{m} x_k v(\tau_k) \ge \sum_{k=1}^{m} y_k v(\tau_k)
$$

then

$$
u(x) = \sum_{k=1}^{m} x_k v(\tau_k)
$$

where v is called a *Bernouilli function*, and where x_i are the probabilities of event τ_i happening

Existence of Neumann-Morgenstern utility function: Let \succeq be a complete, transitive and continuous preference

relation on $X = \nabla(T)$ for any finite set T. Then \succeq admits a utility function u of the expected-utility form iff \succeq meets the axiom of independence of irrelevant alternatives. Sure thing principle (Savage): A decision maker who would take a certain Action A if he knew that event B happens should also take Action A if he new that B not happens and also if he knew nothing about B. (This is equivalent to independence of irrelevant alternatives) Risk neutral: An agent is risk-neutral iff he is indifferent between accepting and rejecting all fair gambles that is for all α , τ_1 , τ_2 :

$$
\mathbb{E}[u(lottery)] = \alpha \cdot v(\tau_1) + (1 - \alpha) \cdot v(\tau_2) = u(\alpha \tau_1 + (1 - \alpha)\tau_2)
$$

Risk averse: An agent is risk averse iff he rejects all fair gambles for all α , τ_1 , τ_2 :

$$
\mathbb{E}[u(lottery)] = \alpha \cdot v(\tau_1) + (1 - \alpha) \cdot v(\tau_2) < u(\alpha \tau_1 + (1 - \alpha) \tau_2)
$$

Since $g(\lambda \alpha + (1 - \lambda)\beta) > \lambda g(\alpha) + (1 - \lambda)g(\beta)$ is the def. of concavity to be risk averse the utility function has to be strictly concave.

Risk seeking: An agent is risk seeking iff he strictly prefers all fair gambles for all α , τ_1 , τ_2 :

$$
\mathbb{E}[u(\text{lottery})] = \alpha \cdot v(\tau_1) + (1 - \alpha) \cdot v(\tau_2) > u(\alpha \tau_1 + (1 - \alpha) \tau_2)
$$

Since $q(\lambda \alpha + (1 - \lambda)\beta) < \lambda q(\alpha) + (1 - \lambda)q(\beta)$ is the def. of convexity to be risk seeking the utility function has to be strictly convex.

Normal form games

Normal form:

1. Players: $N = 1, ..., n$

- 2. Strategies: For every player i, a finite set of strategies, S_i with typical strategy $s_i \in S_i$.
- 3. Payoffs: A function u_i : $(s_1, ..., s_n) \to \mathbb{R}$ mapping strategy profiles to a payoff for each player i. $u: S \to \mathbb{R}^n$

Normal form triplet: $G = (N, \{S_i\}_{i \in N}, \{u_i\}_{i \in N})$ **Strategy profile:** $s = (s_1, ..., s_n)$ is called a strategy profile. Is a collection of strategies, one for each player. If s is played, player i receives $u_i(s)$

Opponents strategies: Write s_{-i} for all strategies except for the one of player i. So a strategy profile may be written as $s = (s_i, s_{-i})$ Dominance:

- 1. Strict Dominance: s_i strictly dominates s_i ['] if $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i}) \forall s_{-i}$
- 2. Weak Dominance: s_i strictly dominates s_i if $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i}) \forall s_{-i}$
- 3. Dominated: A strategy s_i is strictly dominated if there is an s_i that strictly dominates it.
- 4. A strategy s_i is strictly dominant if it strictly dominates all $s_i \neq s_i$

So obvs. we do not play a dominated strategy no matter what others are doing.

Dominant-Strategy Equilibrium: The strategy profile s^* is a dominant-strategy equilibrium if for every player i, $u_i(s_i^*, s_{-i}) > u_i(s_i, s_{-i})$ for all strategy profiles $s = (s_i, s_{-i})$ Nash Equilibrium: is a strategy profile s^* such that for every player i,

$$
u_i(s_i^*, s_{-i}^*) \geq u_i(s_i, s_{-i}^*) \forall s_i
$$

So no player has any regrets hi could not have done better when all other played like they have.

Best reply function:

 $B_i(s_{-i}) = \{s_i | u_i(s_i, s_{-i}) \ge u_i(s_i, s_{-i}) \forall s_i \text{ given the actions }\}$ from our opponents chose our best action. and with the best function the Nash equilibrium gets: s^* is a Nash equilibrium iff $s_i^* \in B_i(s_{-i}^*)\forall i$

Mixed strategy: A mixed strategy σ_1 for a player i is any probability distribution over his or her set S_i of pure strategies. The set of mixed strategies is:

$$
\delta(S_i) = \{ x_i \in \mathbb{R}_+^{|S_i|} : \sum_{h \in S_i} x_{ih} = 1 \}
$$

Mixed extension The mixed extension of a game G has players, strategies and payoffs: $\Gamma = (N, \{S_i\}_{i \in N}, \{U_i\}_{i \in N})$ where

- 1. Strategies are probability distributions in the the set $\delta(S_i)$ meaning we do not choose a strategy deterministically but we choose a strategy according to the distribution σ_i
- 2. U_i is player it's expected utility function assigning a real number to every strategy profile $\gamma = (\gamma_1, ..., \gamma_n)$. $U_i(\sigma) = \sum_s u_i(s) \prod_{j \in N} \sigma_j(s_j)$

All the things like best response and nash equilibrium hold also for mixed strategies!

How to find mixed Nash equilibria:

- 1. Find all pure strategy Nash equilibria.
- 2. Check wether there is an equilibrium in which row mixes between several of her strategies:
	- (a) Identify candidates:
		- i. if there is such an equilibrium then each of these strategies must yield the same expected payoff given column's equilibrium strategy.
		- ii. Write down these payofss ans olve for column's equilibrium mix.
		- iii. Reverse: Look at the strategies that column is mixing on and solve for rows equilibrium mix.
	- (b) Check candidates:
		- i. The equilibrium mix we found must indeed involve the strategies for row we started with.
		- ii. All probabilities we found must indeed be probabilities (between 0 and 1)

Nash Theorem: Every finite game has at least one "Nash" Equilibrium in mixed strategies!

Games / Extensive form

Trembling hand / perfect equilibrium: Take the strategy that is played by nash equilibrium. E.g. (a1, b1) then check if $E[u(a1)] = u(a1, b1)(1 - \epsilon) + u(a1, b2)\epsilon$ where b2 is played with some error probability ϵ . And despite the error this must be greater then as if player 1 would play a2 instead: $E[u(a2)] = u(a2, b1)(1 - \epsilon) + u(a2, b2)\epsilon$ if $E[u(a1)] > E[u(a2)]$ the nash equilb. is perfect equilibrium.

Extensive form game: Players, Basic structure is a game tree with nodes $a \in A$, a_0 is root of tree. And nodes can bee Decision nodes where a player makes a decision or a Chance node where nature plays according to some probability distribution. (If 2 nodes are connected we have no information from above and we have to decide based on nash equilibrium.) Subgames if a node has been reached we have full information at its root node and we can decide as if we're in isolation. Strategy set in subgame: A strategy for a player is over the whole game so if we have 2 subgames with possibility a,b then we have (a,a) , (a, b) , (b, a) , (b, b) where we simultaneously describe as we would play both subgames despite the fact that we play only 1. (important if we have the same information in 2 subgames (shown via connection in between the subnodes) then we have only 2 strategies(a,b).

Evolutionary Game Theory

Symmetric two-player games: $G = (N, \{S_i\}_{i \in N}, \{u_i\}_{i \in N})$.

- 1. Players: $N = \{1, 2\}$
- 2. Strategies: $S_1 = S_2 = S$ with typical strategy $s \in S$
- 3. Payoffs: A function $u_i : (h, k) \to \mathbb{R}$ mapping strategy profiles to a payoff for each player i such that for all $h, k \in S$: $u_2(h, k) = u_1(k, h)$. So it does not really matter what action is chosen the payoff stays the same for both players (in good or bad).

Symmetric Nash Equilibrium: is a strategy profile σ^* such that for every player i,

$$
u_i(\sigma^*,\sigma^*) \geq u_i(\sigma,\sigma^*) \forall \sigma
$$

, "if no player has an incentive to deviate from their part in a particular stategy profile, then it is Nash Equilibrium. In a symmetric normal form game there always exists

a symmetric Nash Equilibrium. (Not all Nash Equilibria of a symmetric game need to be symmetric.

Evolutionary stable strategy(ESS): A mixed strategy $\sigma \in \delta(S)$ is an evolutionary stable strategy (ESS) if for every strategy $\tau \neq \sigma$ there exists $\epsilon(\tau) \in (0,1)$ s.t. $\forall \epsilon \in (0,\epsilon(\tau))$:

$$
U(\sigma, \epsilon \tau + (1 - \epsilon)\sigma) > U(\tau, \epsilon \tau + (1 - \epsilon)\sigma)
$$

A mixed strategy σ *in* $\delta(S)$ is an evolutionary stable strategy if:

> $U(\tau,\sigma) \leq U(\sigma,\sigma) \forall \tau$ $U(\tau,\sigma)=U(\sigma,\sigma)\Rightarrow U(\tau,\tau)< U(\sigma,\tau)$ $\forall \tau\neq\sigma$

Experimential Game Theory

perfect rationality

- 1. Common knowledge about the structure of the game and the payoffs
- 2. Common beliefs: players have beliefs about each others behaviour these believes are correct

3. Optimization: individual behavior is governed by optimization / maximization in terms of expected utilities.

Pure self-interest:

- 1. narrow self interest: agent cares about own material payoff only
- 2. no concern for other players payoff
- 3. no consideration of the effects of his actions on upholding higher order norms or similar
- 4. decisions are not subject so social influence
- More realisticly: Players follow norms / social influences, care about others. Also they know little about how their

choices will affect others and know little about the overall game.

Ultimatum Game: One side proposes moves first. Makes a proposal as to how to split a cake. Other side eather accepts and both get their share or rejects and both get zero. Nash equilibria: Any proposal made responder accepts. Subgame perfection: proposer takes all, accept nevertheless. Public good game: Choose how much you want to contribute between 0 and 20. What you don't contribute is autom. yours. The whole contribution gets multiplied by 3 and equal shares get paid back to all players. Nash equilibrium : Universal non-contribution.