
SLT 2018 Cheat Sheet

Lecture 1
Likelihood of dataset: P (X|Θ) =

∏
i≤n p(xi|Θ) and we

estimate Θ by maximizing the likelihood:
Θ̂ := argmaxΘP (X|Θ)

Markov Inequality: P (X > ε) ≤
E[X]

ε

Chebyshev inequality: P (|ε− µ| ≥ ε) ≤
σ2

ε2

Locally linear embedding: 1) Input: {Xi ∈ RD}i≤N ,
assumed to lie on a d-dimensional manifold with d << D.find
embedding of this for Xi to corresponding Yi ∈ Rd, condition
to preserve neighborhood relations. 2) Xi associated with set
K nearest neighbors Xj such that Xi lies approximately in the
affine subspace containing its neighbors. First identify how
close each data point is to each of its neighbors by way of
coefficients Wij , which approximate Xi by the affine
combination

∑
jWijXj . This amounts to minimizing the

least-squares cost function E(W ) =
∑
i

∣∣∣Xi −∑jWijXj

∣∣∣2 , 3)

under the constraints that
∑
jWij = 1 for each 1 ≤ i ≤ N and

Wij = 0 for each 1 ≤ i, j ≤ N such that Xj is not a neighbor
of Xi. Note that each summand in E(W ) concerns only one
row of W , so the function may be minimized separately for
each i. 4) The low-dimensional embedding is then obtained by
preserving the neighborhood relations captured by Wij , by
minimizing a similar cost function, over Y with W fixed,

Φ(Y ) =
∑
i

∣∣∣Yi −∑jWijYj

∣∣∣2 , under normalization

constraints over Yi fixing their mean to 0 and their covariance
matrix to the identity, without loss of generality. 5)
Minimizing first cost function amounts to finding, for each i, a
normalized vector wj , 1 ≤ j ≤ K, which minimizes the
quadratic form w>Cw with
Cjk = (Xi −X : ni[j])

>(Xi −Xni[k]) for 1 ≤ j, k ≤ K. Here
ni is the array of neighbors of Xi. Such a vector can be found
by solving the linear system of equations

∑
k Cjkwk = 1 and

then normalizing w. The weight matrix is then obtained by
Wi,ni[j]

= wj and Wij = 0 otherwise. 6) Second cost function

is
∑
i,jMijY

>
i Yj , where M = (I −W )>(I −W ). Minimizer

given by d eigenvectors of M with the lowest positive
eigenvalues, the all-ones eigenvector with eigenvalue 0
(resulting from the sum-to-one constraint) omitted. The ith
component of the jth eigenvector gives the jth component of
Yi, and minimal value given by the sum of the corresponding
eigenvalues.

Lecture 2 - Max Ent Inference
Self-Information/Surprise I(C): I(C) = −log(p(C)),
Properties: I(C) = I(A ∩B) = I(A) + I(B) A,B independant.
Entropy H(X): Is the expected value of self-information of a
random variable:
H(X) =

∑
x∈ω p(x)I(x) = −

∑
x∈ω p(x)log(p(x))

H(X) ≥ 0, H(X) ≤ log(|Ω|) equal if p uniform.

Entropy can be interpreted as choosing between 2H(X) equal
probable outcomes.

Joint Entropy X,Y: H(X,Y ) =
∑
x,y∈Ω p(x, y)log(

1

p(x, y)
),

and if X,Y indp. H(X,Y ) = H(X) +H(Y )
Maximum Entropy: maxp(x) −

∑
X p(x)log(p(x))

constraint by the expected values we know: E[rj(X)] = µj
Gibbs distribution maximizes Entropy:

p(x) =
exp(−

∑
j λjrj(x))∫

x′∈X exp(−
∑
j λjrj(x

′))dx
The random variable x

can also denote some solution in a discrete optimization
problem or so.

Kullbeck-leibler: KL(p||q) = E[log(
p(x)

q(x)
)]

Lecture 3 - Max Ent Clustering

Overview: Probabilistic centroids yα and probabilistic
assignments Piα of object i to cluster α. Assumption that data
X and possible labels c are random variables.
Posterior: P (c|X ,Y) for the labels c in space C given data X
nad fixed centroids Y. Constraint that
EP (c| X ,Y)R(c,X ,Y) = µ is a constant fixxed value.
Kmeans: In the case of kmeans we have
Rkm(c,Y) =

∑
i≤n

∥∥xi − yc(xi)∥∥2
. We then use gibbs

P (c| X ,Y) =
exp(−R(c,X ,Y)/T∑

c′∈C exp(−R(c′,X ,Y)/T

Ising Model in Image: Image Truth: xi ∈ {−1,+1}. But
what we have is y ∈ {0, 1}. And we think about this like:
”What image x could have generated best our noisy image y”:
p(x, y) = p(x)p(y|x).

Prior: p(x) ∈
1

Z0
exp(−E0(x)) with

E0(x) = −
∑D
i=1

∑
j∈nbri Wijxixj most of the time we have

Wij = 1 meaning that if xi its neighbors xj are equal we get
higher exponential value and therefore higher probability. So
p(x) obviously sympathizes with equal valued pieces.
And therefore how likely is the image y if our base image was
x?(likelihood): p(y|x) =

∏
i p(yi|xi) = exp(

∑
i−Li(xi))

Posterior of Ising: Most of the time we’re interested in x.
And therefore our posterior looks like this:

p(x|y) =
1

Z
exp(−E(x)) with E(x) = E0(x)−

∑
i Li(xi)

Gibbs sampling Idea: We sample new variables conditioned
on all other variables: xs+1

1 ∼ p(x1|xs2, xs3) = p(xi|x−i)
Gibbs sampling in Ising Model:

p(xt|x−t, θ) =
1

Z

∏
s∈nbr(t) ψst(xs, xt) and in the ising model

we have edge potential of: ψst(xs, xt) = exp(Jxsxt) so with
xi ∈ {0, 1}
we get the full conditional as: p(xt = +1|x−t, θ) =∏

s∈nbr(t) ψst(xt = +1, xs)∏
s∈nbr(t) ψst(xt = +1, xs) +

∏
s∈nbr(t) ψst(xt = −1, xs)

=

exp(J
∑
s∈neigh(t) xs)

exp(J
∑
s∈neigh(t) xs) + exp(−J

∑
s∈neigh(t) xs)

=

exp(Jηt)

exp(Jηt) + exp(−Jηt)
=

1

1 + e−2Jηt
= sigmoid(2Jηt)

Metropolis Hastings: Idea: At each step we propose to
move from state x to a new state x′ with probability q(x′|x)
where q is called the proposal distribution. Having proposed
to move to x′ we then decide whether to accept this proposal
or not according to some formula, (ensuring that the time we
spend in x′ is according to p∗(x).
Accepting propability is for symmetric case(q(x′|x) = q(x|x′)):

r = min(1,
p∗(x′)

p∗(x)
) , non-sym: r = (1, α), α =

p∗(x′)q(x|x′)
p∗(x)q(x′|x)

Why MH is useful is because we do not have to know the

normalization constant of p∗(x′) =
1

Z
p̂(x′) the Z cancel in the

α−equation.
Metropolis Sampler for Clusering:
Input: n objects, cost function R(c, Y,X), Output: partition c:
{objects} → {clusters }. Algorithm:

1. Initialize c(i) ∈ {1, ..., k}randomly and then repeat:
2. draw c′ ∼ Q(c) where Q(c) is proposal distribution
3. p← min{exp(−(R(c′, Y,X)−R(c, Y,X))/T ), 1}
4. draw b ∼ Bernouilli(p) if b=1 c← c′

5. t← t+ 1 until convergence

Gibbs Sampling for Clustering:
Input: n objects, cost function R(c, Y,X), Output: partition c:
{objects} → {clusters }. Algorithm:

1. Initialize c(i) ∈ {1, ..., k}randomly and then repeat:
2. draw i ∈ 1, ..., n randomly
3. c(i) ∼ P (c(i)|c(1), ..., c(i− 1), c(i+ 1), ..., c(n))
4. t = t+ 1
5. until joint distribution P (c(1), ..., c(n)) converged.

Image denoisening / Sampling
Model: Noisy image y = (y1, . . . , yn), yi ∈ {±1}. Find a
denoised image x = (x1, . . . , xn) by minimizing the energy
function: E(x, y) = −h

∑
i xi − β

∑
i,j∈Ni xixj − η

∑
i xiyi

Heatbath: Similarly to the Metropolis algorithm, at each
iteration one cell is chosen randomly and flipped with a
probability, which now takes the form of a sigmoid function
p = 1

2
[1− tanh( 1

2T
(E(x′, y)− E(x(i), y)))] =

exp(−E(x′,y)/T )

exp(−E(x′,y)/T )+exp(−E(x(i),y)/T )
.

Simulated Annealing: Finds the global mode of a
probability distribution, in this case the global minimum of
the energy function, by slowly decreasing the temperature in
each transition. The other steps are the same as the
Metropolis algorithm
Parallel Tempering: Runs N different simulations of the
Metropolis algorithm at different temperatures, and decides
either to continue each simulation separately or to swap the
outputs of two simulations with probability
Deterministic Annealing: Introduces a possibly continuous
distribution pi on the possible space of codevectors yi, called
the mass of effective cluster i, that generalizes in the case of
finite codevectors the fraction of clusters with the same
codevector. The masses are treated as a prior probability over
the space of codevectors and thus constrained to sum to 1.



The corresponding Gibbs distribution for the codevector yi
associated to the datum x is the tilted distribution

p(yi|x) =
pie
−d(x,yi)/T

Zx

where d is the chosen distortion measure, T is temperature
and Zx =

∑
x pie

−d(x,yi)/T is the partition function.

Algorithm splits the cluster in question by randomly
perturbing its centroid. The critical temperature for cluster i
is calculated in the paper is twice the highest eigenvalue of the
covariance matrix of cluster i, given by

Cx|yi =
∑
x p(x|yi)(x− yi)(x− yi)> =

∑
x
p(x)p(yi|x)

p(yi)
(x−

yi)(x− yi)> = 1
p(yi)

∑
x p(x)p(yi|x)(x− yi)(x− yi)>.

At each step, repeat for a fixed temperature T and for each
effective cluster i the updates

p(yi|x) =
p(yi)e

−d(x,yi)/T∑
j p(yj)e

−d(x,yj)/T

p(yi) =
∑
x

p(x)p(yi|x)

yi =

∑
x xp(x)p(yi|x)

p(yi)

until convergence, and then cools down the temperature and if
the critical temperature of cluster i is reached and
K < Kmax, it splits cluster i into two, creating a new cluster
whose centroid is a random perturbation of yi and whose
conditional and marginal probabilities are all initially evenly
partitioned with those of i. For a finite dataset, p(x) = 1/N

Clustering distributional Data
Non Parametric: Notation: We have n different objects
{xi}ni=1. And m possible feature values: {yj}mj=1. An

occurence (dyad) is a pair (xi, yj) ∈ X × Y. Our dataset is
then defined as such occurences: Z = {(xi(r), yj(r))}lr=1 which
is for some specific xi we have l possible feature values yj . We
assume that observations come from a specific cluster:
(xi, yj) ∼ P ((xi, yj)|c(xi), Q(yj |c(xi))). Q(yj |α) is the fature
distribution in the specific cluster α.

Likelih.: L(Z) =
∏
i≤n

∏
j≤m P ((xi, yj)|c(xi), Q)lP̂ (xi,yj).

Where lP̂ (xi, yj) is the number of times object xi exhibits
feature value yj . The empirical distribution

P̂ (xi, yj) =
1

l

∑
r≤l δ(xi, xi(r)) · δ(yi, yi(r)) So just counting

how many times feature yj occurs together with patch xi.
Risc function: We then have Rhc(c,Q,Z) = −log(L) =

−
∑
i≤n

∑
j≤m lP̂ (xi, yj)log(P ((xi, yj)|c(xi), Q).

This then simplifies to the below in the table kullback-leibler
divergence. (As objective function)

k-means clustering histogram clustering
data {x1, ..., xn} {p(.|1), ..., p(.|n)}

centroids {y1, ..., yk} {q(.|1), ..., q(.|k)}
distortion ||xi − yc(i)||2 DKL(p(·|i)||q(·|c(i)))

costs
∑
i≤n

∥∥xi − yc(i)∥∥2 l

n

∑
i≤nD

KL(p(·|i)||q(·|c(i)))

lilekihood of 1 observation: P (x, y|c, θ) = P (x)P (y|c(x))

Posterior: P (c, θ|n) ∝
∏
x

∏
y (P (x)P (y|c(x)))n(x,y) given

the loglikelihood: L(c, θ;n) =∑
x n(x)

[∑
y P̂ (y|x) logP (y|c(x)) + logP (x)

]
+ logP (c) where

θ consists of the model parameters P (x) and P (y|c), n(x) the
number of xs observed, n(x, y) the number of (x, y)s observed

and P̂ (y|x) the empirical probability of observing feature y
given object x. The resulting stationarity equations for MAP

estimation for the parameters (c, θ) are P̂ (x) =
n(x)∑
x′ n(x′)

P̂ (y|c) =
∑
x:ĉ(x)=c

n(x)∑
x′:ĉ(x′)=c n(x′) P̂ (y|x) ≡∑

x P̂ (x|c)P̂ (y|x)

ĉ(x) = arg mina

[∑
y P̂ (y|x) log P̂ (y|c(x)) + logP (c(x) = a)

]
In the case of DA, the hard cluster assignments c : x 7→ c(x)

are replaced with a probabilitistic assignment P̂ (c(x) = a|θ) =
P̂ (a) exp(−n(x)DKL(P̂ (·|x)‖P̂ (·|a))/T+logP (c(x)=a))∑
b=1K P̂ (b) exp(−n(x)DKL(P̂ (·|x)‖P̂ (·|b))/T+logP (c(x)=b))

,

P̂ (a) =
∑
x P̂ (x)P̂ (c(x) = a) after which equation (5) becomes

P̂ (y|c) =
∑
x P̂ (x|c)P̂ (y|x) = 1

P̂ (c)

∑
x P̂ (x)P̂ (c|x)P̂ (y|x) =∑

x P̂ (x)P̂ (c|x)P̂ (y|x)∑
x P̂ (x)P̂ (c|x)

,

Parametric

To get a smooth histogram. We introduce a parametric
distribution to solve this. p(y|v) =

∑
a≤s ga(y)p(a|v) where

ga(y) is some distribution over the feature values. Most of the
time we use gaussian.

Pairwise Clustering

Object relations encoded by proximity or similarity data.
Metric relational: Data corresponds to euclidian distances.
Non-Metric relations: Violate metric properties e.g. Triangle
inequality, Symmetrie. Clustering principle: Group
objects with high similarity together and split those into
different clusters that have no similarity.

Dissimilarity to Similarity: Sij =
exp(−Dij)

C
C constant

Graphbased clustering

Given oi, oj ∈ O, and weights of relations D = {Sij} on edge
i,j. A cluster α is defined as Gα = {o ∈ O : c(o) = α}.
Intercluster - edges:
Eαβ = {(i, j) ∈ E : oi ∈ G : oi ∈ Gα ∧ oj ∈ Gβ}

Shifted correlation clustering:

Counts only similarities relative to a threshold value u.
|X| ±X = max{0,±X}

Rcc(c,D) = −
1

2

∑
ν≤k

∑
(i,j)∈Eνν (|Sij + u|+ Sij + u) +

1

2

∑
ν≤k

∑
µ6=ν

∑
(i,j)∈Eνµ (|Sij + u| − Sij + u).

Symmetrization: R(c;
1

2
(Dij +Dji)) = R(c;D). Is used to

transform data without changing the solution. Xc = QXQT

with proj. matrix Q = In −
1

n
eneTn .

Xc
ij = Xij −

1

n

∑n
k=1 Xik −

1

n

∑n
k=1 Xkj +

1

n2

∑n
k,l=1Xkl

where X either D or S.
Decomposition of dissimilarities: Dij = Sii + Sjj − 2Sij .

Scij = −
1

2

[
(Dij − Sii − Sjj)−

1

n

∑n
k=1(Dik − Sii − Skk)−

1

n

∑n
k=1(Dkj − Skk − Sjj) +

1

n2

∑n
k,l=1(Dkl − Skk − Sll)

]
=

−
1

2

[
Dij −

1

n

∑n
k=1Dik −

1

n

∑n
k=1 Dkj +

1

n2

∑n
k,l=1 Dkl

]
=

−
1

2
Dcij . (smallest eigv. of centralized similaritiy matrix is half

largest eigv of centralized dissimilarity matrix. )

Constant shift embedding: Define D̂ = D + λ0(1− I) as
the shift with smallest eigv. of centralized matrix

Scij = −
1

2
Dcij then: 1. D̂ij are squared Euclidian distances

between vectors {φi}ni=1 ∈ Rn−1. 2. optimal assignments
P (c(i) = v|D) for k-means based on {φi}ni=1 are identical to
those of pariwise problem. 3. {φi}ni=1 are explicitly found by
eigenvalue decomposition. 4. optimal approximative vectors
(in lsq) projecting on leading eigenvectors. (kernel PCA)
Algo: Add algo? 1. Dij = Sii + Sjj − 2Sij

Mean-field approximation
Approximate gibbs distribution since normalization constant is
really hard to calculate.
Model:Q(c, θ0) =

∏
i≤n qi(c(i)), qi(v) ∈ [0, 1]. (No statistical

dependencies between c(i), c(j).

Mean field hi,v: parametrize qi(c(i)) =
exp(−βhi,c(i))∑
v≤k exp(−βhi,v)

Minimize: θ̂0 = argminθ0DKL(Q(c, θ0)||PGibbs(c, θ)) =

argminθ0
∑
c∈C) Q(c, θ0)

log(Q(c, θ0)

PGibbs(c, θ)

Iterative update: Since θ̂0 is function of expexted
assignments E[c(i)] we use EM-like update: E-step: Estimate

E[c(i)] for fixed θ̂0. Minimize KL-divergence w.r.t. θ̂0 fox fixed
E[c(i)].
Mean Field upper bound:

0 ≤
∑
c∈C Q(c, θ0)log(

Q(c, θ0)

exp(−β(R(c)−F)
) =∑

c∈C Q(c, θ0)
[∑

i≤n log(qi(c(i)) + β(R(c)−F)
]

=∑
i≤n

∑
c∈C Q(c, θ0)log(qi(c(i)) + β(EQ[R]−F) =∗∑

i≤n
∑
v qi(v)log(qi(v)) + βEQ[R]− βF . summation of c in

C redues to c(i) in 1,..,k due to normailzation. summations of
c(j) j!=i sum up to 1.



Surrogate optimization target: Since we have to
minimizing the free energy we minimize the bound under
constraint

∑
v≤k qi(v) = 1, ∀i.

F ≤
1

β

∑
i≤n

∑
v qi(v)log(qi(v)) + EQ[R] = B({qi(v)})

Extermality condition (approx by factorial
distribution): minimize B({qi(v)}) that yields the stationary
condition w.r.t. {qi(v)}:

0 =
∂

∂qu(α)
B({qi(v)}) +

∑
i≤n λi(

∑
v≤k qi(v)− 1) =

∂

∂qu(α)

∑
c∈C

∏
i≤n qi(c(i))R(c) +

1

β
(logqu(α) + 1) + λu

=
∑
c∈C

∏
i≤n:i6=u

qi(c(i))I{c(u)=α}R(c)

︸ ︷︷ ︸
mean fields hu,α

+
1

β
(logqu(α) + 1) + λu λu

determined by normalization condition
∑
v≤k qi(v) = 1 i.e.

exp(βλu + 1) =
∑
v≤k exp(−βhu,v)

minimal cost to assign object u to cluster α:

where EQu→α denotes an expectation over all configuration
under the constraint that object u is assigned to cluster α.

Meanfield Equations: qu(α) =
exp(−βhu,α)∑
v≤k exp(−βhu,v)

,

hu,α = EQu→α [R(c)]. Calculation of meanfields:
Decompose R(c) in contributions which depend on object u
and the costs of all the other objects. The u dependent part
influences qu(α) the rest is an irrelevant constant.
EM Algo for meanfield:

MeanField practical part: Problem: We want to denoise
an image.
Idea: Which denoised image produced the noisy image best.
So basically we want to find is

argmaxp(x)p(x, y) = argmaxp(x)p(x)p(y|x): Which perfect
image x explains the noisy image y best.
Prior p(x): We use the ising model so we get the prior
already for free:

p(x) =
1

Z
exp(−E(x)) =

1

Z
exp(−E(

∑∑
j∈NN(i) xiwi,jxj))

and just take the logarithm and Z is left as a constant. Favors
big patches of constant values.
likelihood: The likelihood
p(y|x) =

∏
i p(yi|xi) =

∑
i exp(−Li(xi)) for some loss function

Li. We will use some gaussian loss function.

Posterior: p(x|y) =
p(y|x)p(x)

p(x, y)
=

1

Z
exp(

∑
i Li(xi)− E(x))

but this is hard to optimize.
Solution to posterior problem: Assume posterior can be
factorized: q(x) =

∏
i qi(xi;µi) where we baiscally replaced

the dependance on the neighbors by some ”summary” µi of
the neighbors that we can calculate independantly.
new prior: As a result we get a new prior that we calculate
via: logp̂(xi) = xi

∑
j∈NN(i) Wi,jµi + Li(x). Note that in a

practical implementation we have a constant Wi, j = J for all
i,j. And a result of that we have basically a convolution of a
3x3 kernel with i,i = 0.
mf update: Since we encapsulated the whole thing into µ we
have to update this term , too. So what we calculate is
µ = E[xi] = 1P (xi = 1) + (−1)P (xi = −1) = (see murphy
(21.46)) = tanh(

∑
j ∈ NN(i)Wi,jµj + 0.5 ∗ (Li(+1)−Li(−1))

Model selection for Clustering
Minimum description length: − logp(X|θk)︸ ︷︷ ︸

data

− logp(θk)︸ ︷︷ ︸
model

with one possible approx:

k̂ ∈ argmin1≤k≤Kmax

(
−log(p(X|θk))︸ ︷︷ ︸
neg.loglikelihood

+
1

2
k′logn

)
︸ ︷︷ ︸

complexitypenalty

where k′ is the number of indp. parameters in the model
encoded by θk
Gap statistics: gapn(k) := E∗n[log(Wk)]− log(Wk) where

Wk :=
∑

1≤v≤k
1

2nv

∑
( i, j)EvvDij with Dij = ||xi − xj ||2,

k̂ := min{k|gapn(k) ≥ gapn(k + 1)− σk+1}. In practice:
Apprixmate E∗n[log(Wk)] by bootstrapping. summary: Gap
works for spherically distributed data. - it is not model-free as
it contains a structural bias. - for k-means like criteria it is a
fast heuristic. stability: Solutions on two data sets from the
same source should be similar.

Lecture 8 - Model Validation by
Information Theory
Distibution of algorithm output (minimizers): Replace
”solution” P (c⊥) =

∫
X P (X)δ(c⊥ −A(X))dX where P (c⊥)

denotes the distribution of minimzers given the stochastic data
source P (X). Data space: e.g. weighted graphs, Hypothesis
class: e.g. vertex coloring

Sample algorithms from posteriori:

Construct algo posteriori:

Markov Chains
Let Aij = P (Xt = j|Xt−1 = i) be one step transition matrix.
πt(j) = P (Xt = j) being in state j at time t. π0 initial
distribution over states. Then πj(1) =

∑
i P (Xt = j|Xt−1 =

i) ∗ π0(i) =
∑
i Aij ∗ π0(i) =⇒ π1 = Aπ0 when iteratiting this

equations and at some point π = Aπ then π stationary
distribution. Limiting distribution: πj = limn→∞Anij
P (Xt = j) =

∑
i P (X0 = i)Aij(t)→ πjast→∞

irreducable: There is a way from every node to every other
node: P (Xn|Xi) > 0 for some n and every i.
Periodicity: d(i) = gcd(t : Aii(t) > 0) then check all
d(1), d(2), .. and if all d(i) = 1 chain is aperiodic. Note that
d(1) = gcd{3, 5, 7, 9} = 1 And if all nodes have self loop
anyway aperiodic.
Limitting distribution theorem: Every irreducible,
aperiodic finite markov chain has a limiting distribution which
is equal to π its stationary distribution.
Detailed balance equation: p(x)p(x→ y) = p(y)p(y → x)
where p(x→ y) = p(y|x). Detailed balance equation implies
stationaryity:

∑
x p(x)p(x→ y) = p(y)

Exam properties on one line
Irreducibility: ∀i, j∃ns.t.P (Xn = j|X0 = i) > 0



Aperiocity: d(i) = gcn{t : P (Xt = i|X0 = i) > 0} = 1,∀i
Detailed balance:
P (Xk = i)P (Xl = j|Xk = i) = P (Xk = j)P (Xl = i|Xk = j)
Stationarity (Det. bal. implies stat.)
P (Xk = j) =

∑
i P (Xq = i)P (Xk = j|Xq = i)

EM Algorithm
Goal: Find max. likelihood solutions for models having latent
variables.
Definitions: all observed data: X ∈ Rn×d where xTi is the ith

row. All latent variables by Z with a corresponding row zTi .
The set of all parameters is θ.
(incomplete) Log-likelihood function:
log(p(X|θ) = ln(

∑
Z p(X,Z|θ)) Complete data set: if we

assume that we know X and Z. Then complete log-likelihood:
log(p(X,Z|θ)) Incomplete data set: actual observed data
X.
Algo:

1. Choose initial value for paramter θold

2. E-step evaluate p(Z|X, θold)
3. M step Evaluate θnew = argmaxθQ(θ, θold) where

Q(θ, θold) =
∑
Z p(Z|X, θold)lnp(X,Z|θ)

4. check convergence, else θold = θ, goto 2

Constant Shift embedding
Given D pairwise clustering cost function is

Hpc(M) =
1

2

∑
ν = 1k

∑
i, j = 1nMiνMjνDij∑

i = 1nMiν

where Miν is binary assignment i belongs to ν. to transform
the problem into one of k-means clustering on n-dimensional
embeddings {xi}i = 1n. The steps of the embedding algorithm
are: Symmetrize the matrix D, and decompose it by
introducing a similarity matrix S such that
Dij = Sii+ Sjj − 2Sij. For any such matrix, its centralization
Sc = QSQ where Q = In − 1

n
ene>n also induces a

decomposition of D and satisfies Sc = − 1
2
Dc. Compute the

smallest eigenvalue λn(Sc) of Sc, and if negative shift the
diagonal entries of Sc to obtain a positive semidefinite matrix
S̃ = Sc − λn(Sc)In which can be expressed as a Gram matrix
of vectors {xi}i = 1n. Compute D̃ij = S̃ii + S̃jj − 2S̃ij , which
is the dissimilarity matrix obtained by shifting the off-diagonal
entries of D by λn(Sc) and hence induces the same cost
function, but also satisfies Dij = ‖xi − xj‖2. Use the resulting
matrix of squared distances to apply k-means clustering to the
vectors {xi}ni=1
The embeddings {xi}ni=1 can be obtained by an

eigendecomposition of Sc = XX> = UΛU>, from which
X = (xi, j)ij may be calculated as X = Up

√
Λp, where p is

the number of nonzero eigenvalues of Sc, and Λp and Up store
the corresponding eigenvalues and eigenvectors. This also
allows us to denoise the embedding vectors using PCA, by
only considering the first p∗ < p eigenvalues of Sc.

Pairwise clustering
Given a dataset of size N and an N ×N dissimilarity matrix
D = (Dik), the problem of pairwise clustering tries to cluster
the data into K clusters, represented by an N ×K assignment
matrix M = (Miν) ∈ {0, 1}N×K that minimizes the cost

function Hpc(M) = 1
2

∑N
i,k=1

Dik
N

(∑K
ν=1

MiνMkν
pν

− 1
)

where

pν = 1
N

∑N
i=1 Miν is the weight of cluster ν. Algorithm II

approximates the Gibbs distribution given by Hpc with the
Gibbs distribution given by the factorial cost function
H0(M, E) =

∑N
i=1

∑K
ν=1 MiνEiν , parameterized by external

mean fields E = (Eiν). Minimizing the Kullback-Leibler
divergence DKL(PGb(H0)‖PGb(Hpc), where PGb(H) is the
Gibbs distribution for the cost function H(M) gives the
optimal E as

E∗iν =

〈
1

1 +
∑
j 6=iMjν

1

2
Dii +

∑
k 6=i

Mkν

(
Dik −

1

2

∑
j 6=iMjνDjk∑
j 6=iMjν

)〉 ,
where 〈·〉 corresponds to taking expectations with respect to
PGb(H0(M)). In the limit of large N, this optimum can be
approximated as

E∗iν =
1

1 +
∑
j 6=i 〈Mjν〉

1

2
Dii +

∑
k 6=i
〈Mkν〉

(
Dik −

1

2

∑
j 6=i 〈Mjν〉Djk∑
j 6=i 〈Mjν〉

) .
The expectations 〈Mjα〉 under the Gibbs distribution
PGb(H0(M)) with temperature T are then given by

〈Mjα〉 =
exp(−E∗iα/T )∑K
ν=1 exp(−E∗iν/T )

Algorithm II then uses deterministic annealing to approximate
the Gibbs distribution for varying temperatures, by starting at
high temperature, iteratively applying the two above equations
for 〈Mjα〉 and E∗iν in an EM scheme for fixed T , and decreasing
T exponentially until the final temperature is reached.
Algorithm III further constrains the variational distribution to
be in the form of a Gibbs distribution for the k-means cost
function

Hcc(M) =
N∑
i=1

K∑
ν=1

Miν‖xi − yν‖2,

where (xi)
N
i=1 are embeddings of the data to be determined,

and (yν)Kν=1 are centroids calculated from (xi)
N
i=1; in this case

the mean fields are constrained to take the form
Eiν = ‖xi − yν‖2. Minimizing the KL-divergence
DKL(PGb(Hcc)‖PGb(Hpc)) with respect to (xi)

N
i=1 and

(yν)Kν=1 now gives

Kixi ≈
1

2

K∑
ν=1

〈Miν〉
(
‖yν‖2 − E∗iν

) (
yν − 〈y〉i

)
where 〈y〉i =

∑K
ν=1 〈Miν〉yν is the mean of y under the

conditional distribution p(ν|i) = 〈Miν〉 and

Ki =
〈
yy>

〉
i
− 〈y〉i 〈y〉

>
i the corresponding covariance

matrix, and E∗iν is as calculated in Algorithm II. Algorithm III

again uses deterministic annealing, calculating 〈Miν〉(t+1) in

the E-step from the mean fields E(t)
iν = ‖x(t)

i − y
(t)
ν ‖2, and in

the M-step updating x
(t+1)
i and y

(t+1)
ν iteratively from fixed

〈Miν〉(t+1) until the variables converge.

Model Validation
In order to compare the stability of cost functions R(c,X) ∈ R
under noise in the data X ∼ P(X), approximation set coding
considers a communication scenario including a sender, a
problem generator and a receiver. Each entity is initially given
access to a sample X(1) ∼ P(X) and an optimal solution
c⊥(X(1)) ∈ arg maxc∈C R(c,X(1)). The sender then chooses a
transformation τs ∈ T, |T| = 2nρ which acts on the solution
space (by permuting elements of the dataset in the case of
clustering) and sends it to the problem generator, which
generates another sample X(2) ∼ P(X) and sends τs ◦X(2) to
the receiver. The receiver then estimates τs by maximizing the
posterior agreement between P(c|β,X(1)) ∝ exp(−βR(c,X(1)))
and P(c|β, τ ◦X(2)) ∝ exp(−βR(c, τ ◦X(2))), returning
τ̂ ∈ arg maxτ

∑
T
∑
c∈C exp(−β(R(c,X(1) +R(c, τ ◦X(2))).

Here β represents the degree to which the data is trusted; the
larger the noise in the data, the lower β has to be chosen to
prevent decoding errors. The decoding error P(τ̂ 6= τs|τs) can
be shown to vanish asymptotically if the rate of transmission ρ
falls below the mutual information

Iβ(τs, τ̂) =
1

n
log
|{τs}|Z12

Z1Z2
,

where Z1 =
∑
c∈C exp(−βR(c,X(1))),

Z2 =
∑
c∈C exp(−βR(c,X(2))),

Z12 =
∑
c∈C exp(−β(R(c,X(1)) +R(c,X(2)))) and |{τs}| is

the number of possible realizations of c⊥(τs ◦X(2)).
The approximation capacity is then defined as the maximum
of Iβ over all inverse temperatures β. Then to apply model
selection on R, we split a given dataset X randomly into two
datasets X(1) and X(2), compute the mutual information Iβ
for each R ∈ R, maximize it with respect to β, and choose the
cost function with the largest approximation capacity.
For k-means clustering, we have R(c,X; Y) =

∑n
i=1 εi,c(i)

where εik = εik(X,Y) = ‖xi − yk‖2 and Y are the cluster
centroids inferred by maximizing the entropy of P(c|β,X). For

ε
(i)
ik = εik(X(i),Y) the mutual information is calculated as

Iβ =
1

n
log |{τs}|+

1

n

n∑
i=1

log

∑K
k=1 e

−β(ε
(1)
ik

+ε
(2)
ik

)∑K
k=1 e

−βε(1)
ik
∑K
k=1 e

−βε(2)
ik

where |{τs}| is the number of distinct clusterings on X(1).
Then to evaluate the approximation capacity of the k-means
cost function, we use deterministic annealing to compute the
optimal centroids and costs R(c,X(i)) at different
temperatures T = β−1, allowing for 2K possible clusters to
enable overfitting, and choose as stopping temperature the one
with the highest mutual information, balancing
informativeness and robustness.


	Lecture 1
	Lecture 2 - Max Ent Inference
	Lecture 3 - Max Ent Clustering
	Image denoisening / Sampling
	Clustering distributional Data
	Parametric
	Pairwise Clustering
	Graphbased clustering
	Shifted correlation clustering: 


	Mean-field approximation
	Model selection for Clustering
	Lecture 8 - Model Validation by Information Theory
	Markov Chains
	Exam properties on one line

	EM Algorithm
	Constant Shift embedding
	Pairwise clustering
	Model Validation

